

Coordinated Research Project: Updating the Photonuclear Data Library and <u>Generating a Reference Database for Photon</u> <u>Strength Functions</u>

Vivian Dimitriou Nuclear Data Section International Atomic Energy Agency, Vienna, Austria

Coordinated Research Project: 2016-2019

- Update the Photonuclear Data Library
- Generate a Reference Database for Photon Strength Functions
- 14 participants from 12 countries + 3 advisors
- 3 Research Coordination Meetings + 2 CMs
- 8 Research Contracts
- 6 Research Agreements

Participants

T. Belgya (HAS) Y-S. Cho (KAERI) D. Filipescu (IFIN-HH) R. Firestone (UCB) S. Goriely (ULB) N. Iwamoto (JAEA) T. Kawano (LANL) M. Krticka (Charles Univ. Prague) V. Plujko (Kiev) R. Schwengner (Dresden) S. Siem (Oslo) H. Utsunomiya (Kobe) V. Varlamov (Moscow) M. Wiedeking (iThemba) R. Xu (CNDC) J. Kopecky (Netherlands) P. Oblozinsky (Slovakia)

Scope of the project

Reference Input Parameter Library (RIPL-3)

R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii and P. Talou

Nuclear Data Sheets - Volume 110, Issue 12, December 2009, Pages 3107-3214

10 entries of the Optical Model database corrected in December 2010.

Giant Dipole Resonance Parameters

Data for 18 new isotopes are included in the tables. Data are revised for 87 isotopes. 102 new values are added from 23 sources. 12 values were omitted

Photon Strength Functions database 60 Years

New measurements

Group	Nuclides	Technique
S. Siem (Oslo)		Oslo charged- particles (γ,n)
M. Wiedeking (iThemba)	⁷⁴ Ge (12/2017), ^{180,181,182} Ta (12/2016) ^{154,155} Sm (05/2018)	Ge (ratio method) ; Ta (Oslo method)
R. Schwengner (HZDR)	⁸⁰ Se (12/2016); ⁵⁴ Fe (12/2017); A~60 (⁶² Ni, ⁶⁴ Zn tbc) (03/2019)	At Elbe and/or Higs (⁵⁴ Fe)
T. Belgya (HAS)	²³³ Th, ²³⁹ U (12/2017)	thermal n-capture
H.Utsunomiya (Konan)	^{156,157,158,160} Gd (2019) ^{58,60,64} Ni (12/2017)	(γ,n)

PSF Database 2019

- NRF measurements for 23 nuclei with Z=32-78
- Oslo method data for 72 nuclei with Z=21-94
- ARC/DRC measurements for 88 nuclei with Z=9-94
- (p,γ) measurements for 22 nuclei with Z=22-40
- Ratio method measurement for 1 nucleus, 95Mo
- (p,p') measurements for 3 nuclei, 96Mo, 120Sn and 208Pb
- E1 photodata for 159 nuclei with Z=3-94
- NEW [19 Sep 2022] Thermal Capture (THC) measurements (incl. EGAF) for 55 nuclei with Z=9-90

PSF database

- Each data set entry contains 2 files:
 - 1. Readme file: how PSF is extracted from raw data -references
 - 2. PSF file: X Y dY
 - 3. Oslo method: NLD data files provided

# f1 exp 034	080 NRF.d	at		# f1_exp_034_080 NRF.readme
#				
# Z = 34, A =	= 80			# Data were published by A. Makinaga et al., Phys. Rev. C 94, 044304 (2016).
# No. of ent:	ries: 20			# Reaction 80Se(gamma,gamma') using bremsstrahlung produced with
# Col 1: phot	ton energy	E in MeV		# 11.5 MeV electrons at the ELBE accelerator of HZDR.
# Col 2. bin	width dF	in MoV		1 ÷
# COI 2. DIN	width dE			# Gamma rays were measured with two shielded HPGe detectors at 90 deg to the
# Col 3: dipo	ole streng	th Il in MeV^	-3	# beam and two at 127 deg to the beam.
# Col 4: unce	ertainty d	f1 in MeV^-3		* Spectra were response and efficiency corrected.
<pre># Format: 2f:</pre>	10.3, 2e12	.3		* The photon flux was determined by using known level widths in 11B.
# Author: R.	Schwengne	r HZDR		# Background due to atomic processes in the target was determined in GEANT4
# E	dE	f1	df1	# simulations and subtracted from the spectra. Subtracted spectra contain
6.200	0.200	7.151E-08	4.695E-08	<pre># resolved peaks and nuclear quasicontinuum. #</pre>
6.400	0.200	8.213E-08	3.981E-08	# Spectra were corrected for feeding and branching intensities obtained from
6,600	0.200	9.827E-08	3.488E-08	# simulations of statistical gamma-ray cascades using the code gDEX.
6 800	0 200	1 2028-07	3 0138-08	1 ÷
0.000	0.200	1.292E-07	3.013E-00	# Input for the simulations:
7.000	0.200	1.4932-07	2.0421-00	# (1) Li Strength lunction: three-Lorentz lunction (1L0) # [A B Junchang et al. Phys Lett B 670 200 (2008)] with a
7.200	0.200	7.954E-08	2.507E-08	# quadrupple deformation of 0.23 and a triaxiality of 22 degrees.
7.400	0.200	1.007E-07	2.227E-08	# M1 and E2 strength functions: parametrizations given in RIPL
7.600	0.200	1.216E-07	2.184E-08	# [R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)].
7.800	0.200	1.397E-07	2.022E-08	# Partial level widths were varied using the Porter-Thomas distribution.
8.000	0.200	1.567E-07	1.961E-08	# (ii) Level density: constant-temperature model with parameters from I. U. von Egidy and D. Bucurescu. Phys. Rev. C 80, 054310 (2009)1.
8.200	0.200	1.365E-07	1.727E-08	# Parameters were randomly varied within the given uncertainties.
8.400	0.200	1.322E-07	1.553E-08	+
8.600	0.200	1.386E-07	1.422E-08	# Simulations were performed iteratively. The strength function obtained from
8.800	0.200	1.153E-07	1.274E-08	# stopped when input and output were in agreemant within their uncertainties.
9.000	0.200	1.511E-07	1.345E-08	
9.200	0.200	1.484E-07	1.106E-08	# The absorption cross sections were obtained from scattering cross sections by # using average branching ratios of ground-state transitions obtained from
9.400	0.200	1.572E-07	9.428E-09	# the simulations.
9.600	0.200	1.530E-07	7.450E-09	#

Assessment of exp. PSF

 Assessment of data/techniques considering all uncertainties (model dependent)

Models

- Global models for E1 and M1:
 - D1M+QRPA+0lim: 7380 nuclei with 8 ≤ Z ≤ 110, Goriely et al., Phys. Rev. C 98, 014327 (2018)
 - new Simple Modified Lorentzian (SMLO): 8980 nuclei with $8 \le Z \le 124$, Goriely and Plujko, PRC 99, 014303 (2019)

Others presented:

- TLO, Junghans
- Empirical M1, Kawano
- Shell model calculations (Schwengner)

Validation

Conditions for recommending global models: validation by means of other "integral" data (depending on other parameters, i.e. NLD)

- Two-step cascade spectra MSC: E1+M1 for ~15 nuclei
- Thermal (n, γ) spectra: E1+M1 for 5 nuclei
- $<\Gamma\gamma>: E1+M1$ for ~230 nuclei
- MACS: 30 keV (n, γ) E1+M1 for ~240 nuclei

D1M+QRPA+0lim model

SM-inspired low-energy correction of the de-excitation strength

 $f_{E1} = f_{E1}^{QRPA} + f_{E1}(\varepsilon_{\gamma} \to 0)$ Non-zero limit of the *E1* strength at $\varepsilon_{\gamma} \to 0$ $f_{M1} = f_{M1}^{QRPA} + f_{M1}(\varepsilon_{\gamma} \to 0)$ Upbend of the *M1* strength at $\varepsilon_{\gamma} \to 0$

SMLO – Simplified modified LO (E1+M1)^{60 Years}

• E1: SMLO model describing GDR (Plujko, Gorbachenko, et al., ADNDT 123, 1, 2018) – extended to low energies (T dependence): $\Gamma_{i}(s, T) = \frac{\Gamma_{r,j}(s, \pm \frac{4\pi^{2}}{T^{2}})$

$$\Gamma_j(\varepsilon_{\gamma}, T) = \frac{\Gamma_{r,j}}{E_{r,j}} \left(\varepsilon_{\gamma} + \frac{4\pi^2}{E_{r,j}} T^2 \right)$$

• M1 (spin-flip +scissors): $f_{SLO}^{SC} + f_{SLO}^{Sf}$ incl. upbend: $\overleftarrow{f_{M1}(\varepsilon_{\gamma})} = \overrightarrow{f_{M1}(\varepsilon_{\gamma})} + C \exp(-\eta \varepsilon_{\gamma})$

Comparison of D1M+QRPA and SMLO with Photodata

Validation

Comparison of D1M+QRPA+0lim and SMLO with MACS

Both PSF models reproduce \sim 240 MACS within \sim 40-50%

Validation cont'd

Standard GLO

Recommendations

- Measurements: no recommendations → full model-dependent uncertainty analysis required - evaluation is needed (ongoing)
- Models:
 - D1M+QRPA + upbend, S. Goriely, S. Hilaire, S. Péru, K.
 Sieja, Phys. Rev. C 98, 014327 (2018)
 - SMLO, S. Goriely, V. Plujko, Phys. Rev. C 99, 014303 (2018)
- Giant Dipole Resonance Parameters, V. Plujko, O. Gorbachenko, R. Capote, P. Dimitriou, At. Data Nucl. Data Tables 123, 1 (2018)

PSFdatabse

Atlas tlas GDR	Photon Strength Function Database
tlas DRC	Experimental data
Related Documents	he PSF database contains all the experimental PSF data that were compiled by the IAEA CRP on Generating a Reference Database for Photon Strength Functions [CRP-photonuclear]. The methods that have been used to extract experimental PSF data are extensively described and assessed in the CRP technical report that is published in [1], and in the recent IAEA reports [2,3,4].
NDC(NDS)-0777 NDC(NDS)-0745 NDC(NDS)-0712	The data files naming convention is self-explanatory and includes: the type and multipolarity of the PSF XL={E1 E2 M1 1} (1 stands for E1+M1), if it is experimental or theoretical data, nuclide (Z,A), method used (NRF, OM, ARC/DRC, pg, pp, RM, photonuclear), NSR keynumber is added for photonuclear data.
NDC(NDS)-0649 AEA TECDOC-1178	f{XL}_{exp the}_Z_A_method[_NSRKeyNo].dat, e.g. fe1_exp_012_024_photoabs_1966Dol.dat, f1_exp_042_097_OM_3he_2.dat
Codes	Each data file is accompanied by a README file with the same naming convention but with the extension 'readme'. The README file contains all the information about the measurement, the experimental method, the model dependent analysis and parameters as well as the reference.
mpire-3.2 (Malta)	An interface that would allow the user to plot and compare the measured PSFs is under construction.
Databases IPL hotonuclear Data Library	Here you download the data files for each method: • UPDATED [1 May 2023] NRF measurements for 23 nuclei with Z=32-78: [download] • UPDATED [1 May 2023] charged-particle reaction data with the Oslo method for 72 nuclei with Z=21-94: [download] • UPDATED-corrected [19 Sen 2022] ABC/DRC measurements for 71 nuclei with Z=9-94: [download]
slo Compilation valuated Gamma-ray ctivation File (EGAF) enter for Photonuclear xperiments Data (CDFE)	 (p,g) measurements for 22 nuclei with Z=22-40: [download] ratio method measurement for 1 nucleus, ⁹⁵Mo (1 file): [download] UPDATED [1 May 2023] (p,p₀) measurements for 3 nuclei, ⁹⁶Mo, ¹²⁰Sn and ²⁰⁸Pb: [download]
SE Links SF CRP webpage AEA Nuclear Data ervices	 E1 photodata for 159 nuclei with Z=3-94: [download] NEW - corrected [19 Sep 2022] Thermal Capture (THC) measurements (incl. EGAF) for 55 nuclei with Z=9-90: [download] The entire experimental database can be downloaded here: [download]
	Theoretical data Theoretical PSF data recommended by the IAEA CRP on Reference Database for Photon Strength Functions are also available for downloading. These theoretical PSFs were validated according to the CRP prescription [1].
	Two global models have been used to perform global calculations of E1 and M1 PSFs for all nuclides across the nuclear chart: the D1M-QRPA and SMLO. Details about the models and calculations are available in [1,5,6,7].
	The files contain PSFs in units of [MeV-3] at various excitation energies U (QRPA files) or temperature T (SMLO files) so that they can be used for de-excitation processes. Note that for photoabsorption, U=0 or T=0, while for de-excitation the user needs to use the relation: $U=aT^2$ with $a=A/10$.
	 D1M-QRPA data files [2]: [download] SMLO data files [3]: [E1], [M1]
	Triple Lorentzian model
	Theoretical PSF data generated by the triple Lorentzian model (TLO) [8] are now also available for dowloading. The folder contains the source files for generating the PSF data as well as the data files themselves. These PSFs have not been validated according to the CRP prescription [1].
	TLO data files: [download]
	The entire experimental and theoretical database can be downloaded [here].
	References:

https://www-nds.iaea.org/PSFdatabase/

Publications

[1] S. Goriely et al., The European Physical Journal A 55, 172 (2019).

[2] J. Kopecky, Photon Strength Functions in Thermal Capture, INDC(NDS)-0799.

[3] J. Kopecky, Photon Strength Functions in Thermal Capture II, INDC(NDS)-0815.

[4] J. Kopecky, S. Goriely, Strength Functions Derived from The Discrete And Average Neutron Resonance Capture, INDC(NDS)-0790.

[5] S. Goriely, S. Hilaire, S. Péru, K. Sieja, Phys. Rev. C 98, 014327 (2018).

[6] V. Plujko, O. Gorbachenko, R. Capote, P. Dimitriou, At. Data Nucl. Data Tables 123, 1 (2018).

[7] S. Goriely, V. Plujko, Phys. Rev. C 99, 014303 (2018).

Eur. Phys. J. A (2019) **55**: 172 DOI 10.1140/epja/i2019-12840-1 The European Physical Journal A

Review

Reference database for photon strength functions

S. Goriely¹, P. Dimitriou^{2,a}, M. Wiedeking³, T. Belgya⁴, R. Firestone⁵, J. Kopecky⁶, M. Krtička⁷, V. Plujko⁸, R. Schwengner⁹, S. Siem¹⁰, H. Utsunomiya¹¹, S. Hilaire¹², S. Péru¹², Y.S. Cho¹³, D.M. Filipescu¹⁴, N. Iwamoto¹⁵, T. Kawano¹⁶, V. Varlamov¹⁷, and R. Xu¹⁸

- Data Development Project on Evaluation of PSF data, 2022+
 - PSF systematics
 - Evaluation of PSF data
 - PSF database interface

Participants: Goriely, Ingeberg, Kopecky, Krticka, Schwengner, Siem, Wiedeking, Gorbachenko, Plujko

New interface + APIs

Photon Strength Function Database

Home Search Data -

Search t	he Database	2
For more detailed information, se	ee the Glossary.	
	Z:	
Search by Z (E.g: 1,2,)		
	A:	
Search by A (E.g: 1,2,)		
	XL:	
Search by XL (E.g: E1,E2,)		
	Method:	
Search by Method (E.g: OM, NRF	F,)	
Energy from:	to:	Strict Energy Range:
	Search	
	Reset	

© 2024 IAEA. Terms of Use

Download All 📥 Download CSV 🚣

Show	Search:								
z	A ‡	Method	\$ XL	🕴 No. Data	♦ Min E [MeV]	♦ Max E [MeV]	\$ Author	🕈 Year 🕴 View Readme	\$ Plot \$
з	7	PHOTOABS	E1	40	7.500	27.000	V.V.Varlamov et al.	1986 fe1_exp_003_007_photoabs_1986Var	⊾
з	6	PHOTOABS	E1	40	6.000	26.500	V.V.Varlamov et al.	1986 fe1_exp_003_006_photoabs_1986Var	Ľ
з	6	PHOTONEUT	E1	96	5.680	26.500	B.L.Berman et al.	1965 fe1_exp_003_006_photoneut_1965Be1	Ľ
з	7	PHOTOABS	E1	44	7.340	27.100	J Ahrens	1985 fe1_exp_003_007_photoabs_1985Ahr	Ľ
з	7	PHOTONEUT	E1	52	7.350	27.130	R.L.Bramblett et al.	1973 fe1_exp_003_007_photoneut_1973Bra	Ľ
4	9	PHOTONEUT	E1	59	2.110	6.110	H. Utsunomiya et al.	2000 fe1_exp_004_009_photoneut_2000Uts	⊾
4	9	PHOTONEUT	E1	1	2.060	2.060	K. Sumiyoshi et al.	2002 fe1_exp_004_009_photoneut_2002Sum_K2004003	Ľ
4	9	PHOTOABS	E1	37	10.500	28.500	J.Ahrens et al.	1975 fe1_exp_004_009_photoabs_1975Ahr	Ľ
4	9	PHOTONEUT	E1	59	2.110	6.110	H. Utsunomiya et al.	2001 fe1_exp_004_009_photoneut_2001Uts	Ľ
5	10	PHOTONEUT	E1	113	8.592	25.260	M.H.Ahsan et al.	1987 fe1_exp_005_010_photoneut_1987Ahs	Ľ
Showin	g 1 to 10	of 1,141 entries						Previous 1 2 3 4 5 1	15 Next

Download All 🛓 🛛 Download CSV 🛓

Show 10	♥ entr	ies								Search:	
z -	A	\$ Method \$	XL	\$ No. Data \$	Min E [MeV] ‡	Max E [MeV]	Author	\$Year \$	View Readme	\$	Plot ‡
з	7	PHOTOABS	E1	40	7.500	27.000	V.V.Varlamov et al.	1986	fe1_exp_003_007_photoabs_1986Var		Ľ
з	6	PHOTOABS	E1	40	6.000	26.500	V.V.Varlamov et al.	1986	fe1_exp_003_006_photoabs_1986Var		<u>~</u>
з	6	PHOTONEUT	E1	96	5.680	26.500	B.L.Berman et al.	1965	fe1_exp_003_006_photoneut_1965Be1		Ľ
з	7	PHOTOABS	E1	44	7.340	27.100	J Ahrens	1985	fe1_exp_003_007_photoabs_1985Ahr		<u>۲</u>
з	7	PHOTONEUT	E1	52	7.350	27.130	R.L.Bramblett et al.	1973	fe1_exp_003_007_photoneut_1973Bra		Ľ~
4	9	PHOTONEUT	E1	59	2.110	6.110	H. Utsunomiya et al.	2000	fe1_exp_004_009_photoneut_2000Uts		Ľ
4	9	PHOTONEUT	E1	59	2.110	6.110	H. Utsunomiya et al.	2001	fe1_exp_004_009_photoneut_2001Uts		<u>~</u>
6	13	PHOTOABS	E1	46	7.500	30.000	B.S.Ishkhanov et al.	2002	fe1_exp_006_013_photoabs_2002lsh		Ľ
8	17	PHOTOABS	E1	49	5.000	29.000	B.S.Ishkhanov et al.	2002	fe1_exp_008_017_photoabs_2002lsh		Ľ
9	20	DRC	E1	7	2.518	6.601	M.J.Kenny et al.	1974	fE1_exp_009_020_DRC		<u>۲</u>

Showing 1 to 10 of 586 entries

Show 10	how 10 v entries Search:													
z	• •	\$	Method ‡	XL († No. Data ‡	Min E [MeV] ‡	Max E [MeV]	Author	÷	Year \$	View Readme		‡ Plot	4
21	44		OM	E1+M1	28	1.434	7.914	A. C. Larsen et al.	2	007	f1_exp_021_044_OM		R	1
21	45		OM	E1+M1	29	1.580	8.300	A. C. Larsen et al.	2	007	f1_exp_021_045_OM		Ľ	
21	43		OM	E1+M1	25	1.920	7.680	A. Burger et al.	2	012	f1_exp_021_043_OM		Ľ	
22	44		OM	E1+M1	27	2.173	8.241	A. C. Larsen et al.	2	012	f1_exp_022_044_OM_1		Ľ	
22	44		OM	E1+M1	27	2.173	8.241	A. C. Larsen et al.	2	012	f1_exp_022_044_OM_2		Ľ	
22	46		OM	E1+M1	69	1.790	9.800	M. Guttormsen et al.	2	011	f1_exp_022_046_OM_upper		Ľ	
22	46		OM	E1+M1	69	1.790	9.800	M. Guttormsen et al.	2	011	f1_exp_022_046_OM_lower		Ľ	
22	46		OM	E1+M1	69	1.790	9.800	M. Guttormsen et al.	2	011	f1_exp_022_046_OM_rec		Ľ	
23	51		OM	E1+M1	34	2.194	10.622	A. C. Larsen et al.	2	006	f1_exp_023_051_OM		2	
23	50		OM	E1+M1	28	2.010	8.906	A. C. Larsen et al.	2	006	f1_exp_023_050_OM		Ľ	

Showing 1 to 10 of 185 entries

Previous 1 2 3 4 5

19 Next

Download All 🚣 Download CSV 🚣

Show 1	• •	entries													Sear	ch:					
z	•	A \$	Method	÷ :	XL \$	No. Data 🗘	Min E [MeV] ‡	Max E [MeV] ‡	Author	ŧ	Year 🗧	¢ 1	View Readme						ŧ	Plot	¢
42	9	94	NRF	E	1+M1	24	5.100	9.700	G. Rusev et al.		2009	f	1_exp_042_094_NRF_1							2	
42	9	96	NRF	E	1+M1	19	5.300	8.900	G. Rusev et al.		2009	f	1_exp_042_096_NRF_lower							۲	
42	9	92	NRF	E	1+M1	33	6.100	12.500	G. Rusev et al.		2009	f	1_exp_042_092_NRF							<u>۲</u>	
42	9	96	NRF	E	1+M1	19	5.300	8.900	G. Rusev et al.		2009	f	1_exp_042_096_NRF_upper							⊾	
42	9	96	NRF	E	1+M1	19	5.300	8.900	G. Rusev et al.		2009	f	1_exp_042_096_NRF_rec							۲	
42	9	98	NRF	E	1+M1	23	4.100	8.500	G. Rusev et al.		2008	f	1_exp_042_098_NRF							⊾	
42	1	00	NRF	E	1+M1	21	4.100	8.100	G. Rusev et al.		2008	f	1_exp_042_100_NRF							۲	
42	9	93	DRC	E	1	12	5.189	8.067	A. Wasson et al.		1973	f	E1_exp_042_093_DRC							<u>۲</u>	
42	9	98	ARC	N	/11	8	6.418	7.910	A.F. Gamalli et al.		1972	fl	M1_exp_042_098_ARC							⊾	
42	9	96	ARC	E	2	2	8.007	9.155	BNL/ECN database		1988	f	E2_exp_042_096_ARC							⊾	
Showing	1 to	10 of 54 ei	ntries											Previous	1	2	з	4	5	6	Next

Download All 🚣

Download CSV 🚣

Show	10	×	entries

Show 10	 entries 									Search:			
z	A +	+ Method +	XL ‡	No. Data 🕈	Min E [MeV] ‡	Max E [MeV]	Author	‡ Year	‡ View Readme		ŧ	Plot	¢
42	94	NRF	E1+M1	24	5.100	9.700	G. Rusev et al.	2009	f1_exp_042_094_NRF_1			<u>۲</u>	
42	94	OM	E1+M1	26	0.998	7.381	M. Guttormsen et al.	2005	f1_exp_042_094_OM_1			<u>~</u>	
42	94	OM	E1+M1	26	0.998	7.381	H. Utsunomiya et al.	2013	f1_exp_042_094_OM_2			<u>۲</u>	
42	94	PHOTONEUT	E1	15	9.850	13.500	A. Banu et al.	2019	fe1_exp_042_094_photoneut_2019Ban			<u>~</u>	
42	94	PHOTONEUT	E1	7	9.900	11.780	H. Utsunomiya et al.	2013	fe1_exp_042_094_photoneut_2013Uts			<u>۲</u>	
42	94	PHOTONEUT	E1	78	9.820	27.030	H.Beil et al.	1974	fe1_exp_042_094_photoneut_1974Be3			<u>۲</u>	
Showing 1 t	o 6 of 6 entrie	25									Previous	1 Next	_

Previous

		•			
M. Wiedeking and V.W. Ingeberg	2016	G. M. Tveten et al., Phys. Rev. C 94, 025804 (2016)	f1_exp_042_092_OM_upper	[data]	[readme]
M. Wiedeking and V.W. Ingeberg	2016	G. M. Tveten et al., Phys. Rev. C 94, 025804 (2016)	f1_exp_042_092_OM_lower	[data]	[readme]

PSF database: to do list

- Update photonuclear PSF data
- Include model curves to interface
- Include photonuclear PSF from IAEA/PD-2019 library
- Include links to Atlas (GDR, ARC, DRC, THC)
- Make APIs available

Thank you!

