RIPL-4 update on the mass, nuclear level densities and fission segments in the framework of mean field models

S. Goriely

In collaboration with

- W. Ryssens, G. Grams (ULB)
- S. Hilaire (CEA/DAM/DIF)
- A. Koning (IAEA)

Task 4: Update of the RIPL-3 mass segment

5. Update of RIPL-3 Segments

5.1. Update of the Mass segment (Coord : S. Goriely)

It is proposed to include in RIPL-4:

- AME'16 experimental and recommended masses
- FRDM'12 instead of FRDM'95 (masses and deformations)
- HFB-27 masses and densities instead of HFB-14 (plus deformations)
- D1M masses, deformation and densities
- WS4 masses & deformations (β_2 , β_4 , β_6)

This proposal will be revisited at each RCM for new possible updates.

 \rightarrow files prepared and made available at 2d RCM

AME'20 of experimental and recommended masses

 \rightarrow New updates proposed :

- HFB: BSkG2 → BSkG3 mass model
- Others ?

(files available)

Brussels-Skyrme-on-a-Grid: BSkG

BSkG1 (2021)

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

BSkG2 (2022)

- fitted to 45 fission barriers
- includes spins, currents,...

BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation

BSkG1: G. Scamps et al.,	EPJA 57, 333 (2021).
BSkG2: W. Ryssens et al	., EPJA 58, 246 (2022).
W. Ryssens et al	., EPJA 59 , 96 (2023).
BSkG3: C. Grams et al. E	PIA 59 270 (2023)

$ \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1(ron num	BSk Do iber N	G3 150
Rms σ	BSkG1	BSkG2	BSkG3
Masses [MeV]	0.741	0.678	0.631
Radii [fm]	0.024	0.027	0.024
Prim. barriers [MeV]	0.88	0.44	0.33
Secon. barriers [MeV]	0.87	0.47	0.51
Fission isomers [MeV]	1.0	0.49	0.34
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3

BSkG3 masses, deformations & densities: new Skyrme-HFB default in TALYS

Also available at: https://http://www.astro.ulb.ac.be/bruslib/nucdata/bskg03-dat

BSkG1 & 2 & 3

G. Scamps, et al. EPJA 57 (2021) 333

Impact of Triaxiality

Allows for time-reversal symmetry breaking

Inclusion of 'time-odd' terms in the Skyrme EDF instead of Equal Filling Approximation (EFA) as almost all previous models

Contributions of time-odd terms to the nuclear masses

- Almost all time-odd energies are positive (repulsive)
- Effect can be negative for Z=N nuclei (red points: Z=N nuclei)
- Particularly large effect for light nuclei and just outside shell closures

BSkG3: Inclusion of octupole deformation for GS mass

- dripline modified
- fission properties modified

BSkG3: Stiffer Equation of State of pure neutron matter & microscopic pairing from ab-initio calculations

Inclusion of t_4 and t_5 terms

Pairing strength: $g_q(\rho_n, \rho_p) = V_q(\rho_n, \rho_p) \left[1 + \kappa_q (\nabla \rho_0)^2\right]$

$$V_q(
ho_n,
ho_p) = -rac{8\pi^2}{I_q(
ho_n,
ho_p)} \left(rac{\hbar^2}{2M_q^*(
ho_n,
ho_p)}
ight)^{3/2}\,,$$

where

$$I_q = \int_0^{\lambda_q^{\text{INM}} + E_{\text{cut}}} d\xi \frac{\sqrt{\xi}}{\sqrt{(\xi - \mu_q)^2 + [\Delta_q^{\text{INM}}(\rho_n, \rho_p)]^2}}$$

BSkG3: Remarkable description of primary fission barriers (σ=0.33MeV)

rms deviations on 45 Z>90 nuclei wrt known (RIPL3) fission barriers/wells

	BSkG2	BSkG3
σ(<i>M</i>) [MeV]	0.67	0.63
σ(<i>E</i> _l) [MeV]	0.44	0.33
σ(<i>E</i> _{II}) [MeV]	0.47	0.51
$\sigma(E_{iso})$ [MeV]	0.49	0.36

	HFB-14	FR(L)DM
ರ(<i>M</i>) [MeV]	0.73	0.56
σ(<i>E</i> _I) [MeV]	0.59	0.76
σ(<i>E</i> _{II}) [MeV]	0.72	
$\sigma(E_{iso})$ [MeV]	0.73	

BSkG3: accurate reproduction of charged radii – $\sigma(810 R_c) = 0.237$ fm

BSkG3 *deformed* densities : new Skyrme-HFB default in TALYS

Comparison with experimental masses

Comparison with BSkG2 and BSk31 masses

Differences in mass predictions among various mass models

Nuclear Level densities

New BSkG3 predictions

BSkG1-3 interactions (MOCCa code: Ryssens et al. 2021-2023): σ(M)~0.74-0.63 MeV

BSkG1-3 interactions (MOCCa code: Ryssens et al. 2021-2023): σ(M)~0.74-0.63 MeV

- Even lower single-particle density
- Lower intrinsic level density
- No more *K* quantum numbers

 $\bar{K} = \frac{1}{2} \lfloor 2 \langle \hat{J}_{\mu} \rangle \rceil$ where $\mu = x = y = z$ is the principal axis of the nucleus in the intrinsic frame with the lowest Belyaev moment of inertia intrinsic frame with the lowest Belyaev moment of inertia.

 \rightarrow "round to the nearest half-integer", and reduces to the K quantum number in the case of axial symmetry

BSkG1-3 interactions (MOCCa code: Ryssens et al. 2021-2023): σ(M)~0.74-0.63 MeV

BSkG3 + Combinatorial model

Wouter Ryssens (ULB)

NLDs for triaxial nuclei: ¹⁹⁶Pt

Rotational enhancement

- rigid rotor modelling
 - three moments of inertia
 - requires a small diagonalization
- results in (at same excitation)
 - more states
 - more extended spin distribution

 $\hat{H}_{\rm rot} = \sum_{\mu=x,y,z} \frac{\hat{J}_{\mu}^2}{2\mathcal{I}_{\mu}}$

 $J = J_{\rm rot} + \bar{K}$

BSkG1-3 interactions (MOCCa code: Ryssens et al. 2021-2023): σ(M)~0.74-0.63 MeV

$$\rho(E_X, J, P) = \frac{1}{2} \sum_{\bar{K}=-J}^{J} \sum_{i=1}^{n^{J,\bar{K}}} \rho\left(E_X - E_i^{J,\bar{K}}, P\right) \qquad n^{J,\bar{K}} = \begin{cases} J_{\text{rot}} + 1 & \text{if } J_{\text{rot}} \text{ is even, and } \bar{K} \neq 0, \\ J_{\text{rot}} & \text{if } J_{\text{rot}} \text{ is odd, and } \bar{K} \neq 0, \\ J_{\text{rot}}/2 + 1 & \text{if } J_{\text{rot}} \text{ is even, and } \bar{K} = 0, \\ (J_{\text{rot}} - 1)/2 & \text{if } J_{\text{rot}} \text{ is odd, and } \bar{K} = 0. \end{cases}$$

Wouter Ryssens (ULB)

Collective enhancement for triaxial nuclei

Expectations

• from analytical models:

$$\frac{\rho_{\rm triaxial}}{\rho_{\rm axial}} \sim \frac{\sqrt{\mathcal{I}_x \mathcal{I}_y \mathcal{I}_z}}{\mathcal{I}_\perp} U^{1/4}$$

• wider spin distributions

BSkG1-3 interactions (MOCCa code: Ryssens et al. 2021-2023): σ(M)~0.74-0.63 MeV

Performance on mean s-wave spacings

Wouter Ryssens (ULB)

$$f_{\rm rms} = \exp\left[\frac{1}{N_e}\sum_{i=1}^{N_e}\ln^2\frac{D_{\rm th}^i}{D_{\rm exp}^i}\right]^{1/2},$$

	f _{rms}
BSkG2 (triaxial)	1.83
BSkG2 (axial)	2.13
BSFG	1.80
HFB+comb	2.30
THFB+comb	2.70

HFB+comb: S. Goriely, S. Hilaire and A. J. Koning, PRC 78, 064307 (2008).
THFB+comb: S. Hilaire, M. Girod, S. Goriely and A. J. Koning, PRC 86, 064317 (2012).
BSFG: A.J. Koning, S. Hilaire and S. Goriely, NPA810, 13-76 (2008).
Exp. data : NNDC and F. Giacoppo, PRC 90, 054330 (2014).

Tables ready for use: only need renormalisation coefficients (α, δ) on experimental D_{exp}

$$\rho_{\text{renorm}}(U) = e^{\alpha \sqrt{(U-\delta)}} \rho_{\text{global}}(U-\delta)$$

The effect of triaxiality

- lower intrinsic NLD
- modest deformation and MOI

Lower overall level density with a different **U-dependence**

- lower intrinsic NLD
- large deformation and MOI

Larger overall level density with a different U-dependence

Wouter Ryssens (ULB)

Comparison of BSkG3+Combinatorial NLD with Oslo data

Fission properties

• New BSkG3 predictions

BSkG3 fission paths

BSkG3 fission paths

Fission

Rms σ	BSkG1	BSkG2	BSkG3
Masses [MeV]	0.741	0.678	0.631
Radii [fm]	0.024	0.027	0.024
Prim. barriers [MeV]	0.88	0.44	0.33
Secon. barriers [MeV]	0.87	0.47	0.51
Fission isomers [MeV]	1.0	0.49	0.34
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3

Fission properties of 45 actinide nuclei

- includes odd-A and odd-odds
- <u>all</u> inner barriers exploit triaxiality
- <u>all</u> outer barriers exploit
 - octupole deformation
 - triaxial deformation

BSkG3: Remarkable description of primary fission barriers (σ=0.33MeV)

rms deviations on 45 Z>90 nuclei wrt known (RIPL3) fission barriers/wells

	BSkG2	BSkG3
σ(<i>M</i>) [MeV]	0.67	0.63
σ(<i>E</i> _I) [MeV]	0.44	0.33
σ(<i>E</i> _{II}) [MeV]	0.47	0.51
$\sigma(E_{iso})$ [MeV]	0.49	0.36

	HFB-14	FR(L)DM
σ(<i>M</i>) [MeV]	0.73	0.56
σ(<i>E</i> _I) [MeV]	0.59	0.76
σ(<i>E</i> _{II}) [MeV]	0.72	
$\sigma(E_{iso})$ [MeV]	0.73	

Extraction of the BSkG3 1D Lowest Energy Paths Axial (β_{20}, β_{30}) paths

Effects of triaxiality on *both*

• Triaxial inner barrier

• Triaxial- and octupole-deformed outer barrier

(also for odd-*A* and dd-odd nuclei)

Impact of triaxial deformations on the Lowest Energy fission path $(\beta_{20},\beta_{22},\beta_{30},\beta_{32})$

BSkG3 estimate of NLD at fission saddle points and well

Triaxial inner barrier and octupole-triaxial outer barrier

.... MORE TO COME

- Determination from 2D-constrained (β_{20} , β_{22}) PES with BSkG3 :
 - fission paths (LEP & LAP) with BSkG3 inertial masses
 - 1D projection of fission path for transmission barrier calculation
 - NLD at saddle points and isomeric wells
 - Calculation of spontaneous, β-delayed and n-induced fission probabilities
- Calculations of full 3D-constrained (β_{20} , β_{22} , β_{30}) PES (~ 20 M CPU h)
- To be updated by BSkG4 (coming soon)?

for some 2000 (e-e,e-o,o-e,o-o) nuclei ($90 \le Z \le 110$) from p- to n-drip lines

- New post-doc position at ULB for 3 years on "fission"
 - \rightarrow candidate recruited to start on 1 July, 2024

Expected outcomes for RIPL-4 : ~ end 2024...