
ENSDF JSON format

Not export controlled

Chris Morse

Outline

• Introductory remarks

• Overview of the JSON file structure

• Comments on the new format

2

How it started

3

The design of ENSDF

effectively envisions two kinds

of users:

1. Evaluators

2. Journal readers

Here be evaluators

Everyone else

How it's going

4

The design of ENSDF

effectively envisions two kinds

of users:

1. Evaluators

2. Journal readers

But there is a third class of

users which is effectively

unsupported:

computational users

Here be evaluators

Humans

Computers...?

Problems for non-experts

The 80-column ENSDF format is hard to use

• For the standard one-card records:
• No delimiters - must remember field widths

• No labels - must remember field locations

• Inconsistent units - must remember what/where

• Asymmetric errors almost never supported

• For the continuation items:
• Labels can be confusing, often used inconsistently

• Units are not allowed

• Multiple ways to indicate limits or approximations

5

New paradigm

1. Evaluators interact with ENSDF via an editor (c.f. upcoming talk by D. Mason)

2. Human readers interact with ENSDF via PDFs

3. Computational users interact with ENSDF via new JSON format

Benefits:

• The representation of the data is decoupled from the data itself

• E.g. evaluators do not have to worry about format changes, the editor handles those details

• JSON enjoys widespread adoption in computing
• Much of the tool-development work is done for us

6

What is JSON?

• A highly structured data interchange format

• Governed by a simple set of rules:
• Data entries are key-value pairs

• Keys are (unique) strings

• Values can have three types:
• Basic: string, integer, number, boolean, NULL

• Object: A collection of key-value pairs enclosed in { }

• Array: An ordered list of values enclosed in []

• Trivially easy to deserialize

7

[

 {

 "institution": "University of Nowhere",

 "address": {

 "street": "University Ave",
 "number": 1,

 "zip": 12345

 },

 "presentAddress": true

 }
]

affiliations.json

JSON with Python

import json

with open("affiliations.json") as jsonfile:

 jsondata = json.load(jsonfile)

 for item in jsondata:

 print(item["institution"])

8

[

 {

 "institution": "University of Nowhere",

 "address": {

 "street": "University Ave",
 "number": 1,

 "zip": 12345

 },

 "presentAddress": true

 }
]

affiliations.jsondeserialize.py

ensdf@nndc:~$ python deserialize.py

University of Nowhere

9

Overview of the new format

The new files are available at https://www.nndc.bnl.gov/ensdf-json

NB: These are still considered a beta release

Organization

• Datasets

• Header (Z, A, ...)

• Comments

• Various info (e.g. Q-values)

• Levels

• Level properties (energy, spin-parity, ...)

• Radiations (alpha, beta, gamma...)

• Radiation properties (energy, ...)

10

Datasets

There are currently 14 defined types of datasets in the JSON format

The number of datasets in each category is given in parentheses

11

adopted (3411) general reaction (6976)

alpha decay (829) isomer decay (589)

beta decay (2370) neutron capture (607)

charge exchange (142) prompt-particle decay (48)

coulomb excitation (389) spontaneous fission (249)

delayed-particle decay (277) transfer (2563)

fluorescence (198) comments (278)

Header

Contains information to identify a file

• Nuclide properties like mass number (A), proton number (Z), element symbol

• Dataset name
• Like DSID, but only used for human readers

• Dataset type
• One of the 14 categories on the previous slide

• Database
• E.g. ENSDF or XUNDL

• History
• Full evaluations, or Updates

12

Levels

• Organized as an array of
objects

• Easy to iterate in code

• Contains the usual properties

13

{

 "energy": {

 "value": 0,

 "unit": "keV",

 "uncertainty": {
 "value": 0,

 "type": "symmetric"

 }

 },

 "halflife": {
 "value": 13,

 "unit": "ms",

 "uncertainty": {

 "type": "asymmetric",

 "upperLimit ": 8,
 "lowerLimit": 5

 }

}

}

Gammas

• Similar structure to levels

• Main difference is strict indexing
• Exception is unplaced gammas

14

{

 "energy": {

 "value": 121.03,

 "unit": "keV",

 "uncertainty": {
 "value": 0.1,

 "type": "symmetric"

 }

 },

 "initialStateIndex": 1,
 "finalStateIndex": 0

}

Individual quantities

Almost everything is
based on a common
template which
expresses physical
values, containing:

• A value

• An uncertainty
• Symmetric

• Asymmetric

• Limit

• Approximation

• Unreported

• Extensible as needed

15

{

 "energy": {

 "value": 121.03,

 "unit": "keV",

 "uncertainty": {
 "value": 0.1,

 "type": "symmetric"

 }

 }

}

Always

If needed

Always

16

Remarks on the new format

What isn't JSON?

• Code: JSON does nothing on its own
• ...but there are tools to make it do things

• A replacement for documentation
• ...but it does make the data more expressive

• A quick fix for the challenges of evaluations
• ...but it creates some new possibilities

17

How can we leverage JSON in software?

JSON Schema is a means of enforcing data
consistency

• More specifically to our use case:
• A set of rules for JSON documents

• Defines what data are allowed and in what form

• Extensible

18

{

 "$id": "my.schema/person.json,

 "type": "object",

 "properties": {

 "name": {
 "type": "string"

 },

 "age": {

 "type": "integer"

 },
 "passport": {

 "type": "integer"

 }

 }

}

Validation

• The validator is code (we're using Python)

• The validator compares a document to a specified schema

• If either input is malformed, it errors out
• We develop the schema, and warrant that it is correct

• Use of the new editor ensures correct documents
• D. Mason will cover the editor later

• Finally, a list of validation failures, if any, is printed

• NB: validation is like running FMTCHK

19

JSON Schema

Validator

Log file

Can the data speak for itself?

Not entirely, but we can do a lot

• Several features of JSON allow control of the
data
• Restrict possible values in a field

• Provide inline documentation/annotations

• Require or forbid certain data
• Can be based on conditional statements

• Like a highly formalized format manual
• Can encode (some) policies

• Closer to FMTCHK than Consistency Check

• Can even auto-generate code from schema

20

{

 "$id": "my.schema/person.json,

 "type": "object",

 "description": "A person",

 "properties": {
 "name": {

 "type": "string"

 },

 "age": {

 "type": "integer",
 "minimum": 0

 },

 "passport": {

 "type": "integer"

 }
 },

 "required": ["name", "age"],

 "additionalProperties": false

}

Will it make my life easier?

Not on its own - but it makes tool
development much easier

• Example: measurements
• Dedicated spot for individual

measurements

• New evaluation? Just add new
measurements

• Hypothetical: web-aware
evaluations

• Automatic referencing to
XUNDL?

21

"measurements": {

 "method": "bestValue",

 "summary": "From 2017Ar10",

 "measuredValues": [

 {
 "value": 10.1,

 "unit": "s",

 "uncertainty": {

 "value": 0.3,

 "type": "symmetric"
 },

 "isIncluded": true,

 "reference": "2017Ar10"

 }

]
}

Questions?

AMA

22

	Slide 1: ENSDF JSON format
	Slide 2: Outline
	Slide 3: How it started
	Slide 4: How it's going
	Slide 5: Problems for non-experts
	Slide 6: New paradigm
	Slide 7: What is JSON?
	Slide 8: JSON with Python
	Slide 9: Overview of the new format
	Slide 10: Organization
	Slide 11: Datasets
	Slide 12: Header
	Slide 13: Levels
	Slide 14: Gammas
	Slide 15: Individual quantities
	Slide 16: Remarks on the new format
	Slide 17: What isn't JSON?
	Slide 18: How can we leverage JSON in software?
	Slide 19: Validation
	Slide 20: Can the data speak for itself?
	Slide 21: Will it make my life easier?
	Slide 22: Questions?

