

<u>The update of an evaluation when</u> <u>no new experimental information is</u> available

A. Negret

<u>Updating an evaluation when no new experimental information is available:</u>

Updating an evaluation when no new experimental information is available:

 If the previous evaluation was performend by <u>the same evaluator</u> and <u>no significant</u> <u>change in policies</u> occurred:

Most probably the update of a few values is sufficient (Q values, conversion coefficients, log*ft* values, etc.).

Updating an evaluation when no new experimental information is available:

 If the previous evaluation was performend by <u>the same evaluator</u> and <u>no significant</u> <u>change in policies</u> occurred:

Most probably the update of a few values is sufficient (Q values, conversion coefficients, log*ft* values, etc.).

• If the previous evaluation was performed by <u>a different evaluator</u>,

The evaluation has to be performed from zero, but most probably the old evaluation will be the basis of the new one.

Updating an evaluation when no new experimental information is available:

 If the previous evaluation was performend by <u>the same evaluator</u> and <u>no significant</u> <u>change in policies</u> occurred:

Most probably the update of a few values is sufficient (Q values, conversion coefficients, log*ft* values, etc.).

If the previous evaluation was performed by <u>a different evaluator</u>,

The evaluation has to be performed from zero, but most probably the old evaluation will be the basis of the new one.

The case of ¹⁰¹Cd:

- Previous evaluation performed in 2006.
- A new evaluation of A=101 performed by the groups in Debrecen and Bucharest. 4 authors, each of them evaluation 3-4 isotopes. The whole project coordinated by Timar Janos.
- No new experimental data for ¹⁰¹Cd after 2006.

¹⁰¹Cd – currently in ENSDF:

¹⁰¹Cd Levels

Cross Reference (XREF) Flags

Α	101 In β^+ decay
В	92 Mo(12 C,3n γ)

C (HI,xn γ)

E(level)	$\mathrm{J}^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0 [‡]	(5/2+)	1.36 min 5	ABC	$%ε+%β^+=100$ $T_{1/2}$: weighted average of: 1.37 min 5 (1980Ka05) and 1.2 min 2 (1969Ha03) β+ decay; on-line ms of Sn(p,spallation) products. J^{π} : based on syst with ¹⁰⁵ Cd, ¹⁰⁷ Cd, ¹⁰⁹ Cd g.s. and γ decays.
252.0 [‡] 1	$(7/2^+)$		A C	
891.1 [#] 6	$(9/2^+)$		С	
1143.7 [‡] 6	$(11/2^+)$		С	
1672.6 [#] 1	$(13/2^+)$		С	
1799.0 [‡] 1	$(15/2^+)$		С	
2127.7 2	$(15/2^+)$		С	
2284.8 [‡] 2	$(19/2^+)$	4.6 ns 4	С	$T_{1/2}$: from 1992A117 in (HI,xn γ).
2301.2 [#] 2	$(17/2^+)$		С	
2404.1 2			С	
2479.8 [#] 2	$(19/2^+)$		С	
2638.3 [‡] 2	$(21/2^+)$		С	
2918.1 2			C	
	(21/2)		C	

E(level)

 0.0^{\ddagger}

252.0[‡] 1

891.1[#] 6

1143.7[‡] 6

1672.6[#] 1

1799.0[‡] 1

2127.7 2

2284.8[‡] 2

2301.2[#] 2

2479.8[#] 2

2638.3[‡] 2

2918.1 2

303/112

2404.1 2

Horia Hulubei National Institute for Physics and Nuclear Engineering

C

¹⁰¹Cd – currently in ENSDF: ¹⁰¹Cd Levels **Only 2 levels** Cross Reference (XREF) Flags Empty dataset (unpublished data) 101 In β^+ decay Α $^{92}Mo(^{12}C.3n\gamma)$ В ⁵⁰Cr(⁵⁸Ni,2pnαγ) 1996Pa30, 1992Al17 С $(HI,xn\gamma)$ J^{π} $T_{1/2}$ **XREF** Comments $(5/2^+)$ 1.36 min 5 ABC $\%\varepsilon + \%\beta^+ = 100$ $T_{1/2}$: weighted average of: 1.37 min 5 (1980Ka05) and 1.2 min 2 (1969Ha03) β + decay; on-line ms of Sn(p,spallation) products. J^{π}: based on syst with ¹⁰⁵Cd, ¹⁰⁷Cd, ¹⁰⁹Cd g.s. and γ decays. $(7/2^+)$ A C $(9/2^+)$ С $(11/2^+)$ C $(13/2^+)$ C $(15/2^+)$ С С $(15/2^+)$ $(19/2^+)$ 4.6 ns 4 $T_{1/2}$: from 1992Al17 in (HI,xn γ). С $(17/2^+)$ С С $(19/2^+)$ C $(21/2^+)$ С С

2918.1 2

303/112

Horia Hulubei National Institute for Physics and Nuclear Engineering

С

C

¹⁰¹Cd – currently in ENSDF: ¹⁰¹Cd Levels ⁺ J^{π} without comments are Only 2 levels Cross Reference (XREF) Flags preliminary based on $\gamma(\theta)$ Empty dataset (unpublished data) 101 In β^+ decay Α $^{92}Mo(^{12}C.3n\gamma)$ В ⁵⁰Cr(⁵⁸Ni,2pnαγ) 1996Pa30, 1992Al17 С $(HI,xn\gamma)$ J^{π} $T_{1/2}$ **XREF** E(level) Comments 0.0^{\ddagger} $(5/2^+)$ 1.36 min 5 $\%\varepsilon + \%\beta^+ = 100$ ABC $T_{1/2}$: weighted average of: 1.37 min 5 (1980Ka05) and 1.2 min 2 (1969Ha03) β + decay; on-line ms of Sn(p,spallation) products. J^{π} : based on syst with ¹⁰⁵Cd, ¹⁰⁷Cd, ¹⁰⁹Cd g.s. and γ decays. 252.0[‡] 1 $(7/2^+)$ A C 891.1[#] 6 $(9/2^+)$ C 1143.7[‡] 6 $(11/2^+)$ C 1672.6[#] 1 $(13/2^+)$ C 1799.0[‡] 1 $(15/2^+)$ С 2127.7 2 $(15/2^+)$ С 2284.8[‡] 2 $(19/2^+)$ 4.6 ns 4 T_{1/2}: from 1992Al17 in (HI,xn γ). С 2301.2[#] 2 $(17/2^+)$ С 2404.1 2 С 2479.8[#] 2 $(19/2^+)$ C 2638.3[‡] 2 $(21/2^+)$ С

(HI,xnγ) **1996Pa30,1992Al17**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2006		

101

1996Pa30: 58 Ni(58 Ni,2p α n γ) E= 261 MeV.

Measured: pn γ , $\gamma\gamma\gamma$, $\gamma\gamma\eta$, $\gamma\gamma(t)$, Nordball array with 15 Ge Compton suppressed, a neutron wall and a silicon ball. 1992Al17: ⁴⁶Ti(⁵⁸Ni,xnp γ) E= 231 MeV, ⁵⁰Cr(⁵⁸Ni,xnp γ).

E = 231 MeV. Measured: $pn\gamma$, $\gamma\gamma\gamma$, $\gamma\gamma\eta$, $\gamma\gamma(t)$.

The level scheme is as given by 1996Pa30.

					¹⁰¹ Cd Le	vels
E(level)	J^{π}^{\dagger}	T _{1/2}	E(level)	J^{π}^{\dagger}	E(level)	J^{π} †
0.0^{\ddagger}	$(5/2^+)$		3062.3 [#] 2	(21/2)	5039.4 [@] 2	(27/2,29/2)
252.0 [‡] 1	$(7/2^+)$		3398.5 [‡] 2	$(23/2^+)$	5128.2 [‡] 3	(29/2)
891.1 [#] 1	$(9/2^+)$		3561.1 [@] 2	$(23/2^+)$	5612.7 <mark>#</mark> 2	(29/2)
1143.7 [‡] <i>1</i>	$(11/2^+)$		3657.3 2		6014.4 <i>4</i>	
1672.6 [#] 1	$(13/2^+)$		3700.8 [#] 2	(23/2)	6077.4 [#] 2	(31/2)
1799.0 [‡] 1	$(15/2^+)$		3717.6 5		6105.0 [@] 2	(31/2)
2127.7 2	$(15/2^+)$		3739.5 [‡] 2	$(25/2^+)$	6131.0 2	
2284.8 [‡] 2	$(19/2^+)$	4.6 ns 4	3991.3 [#] 2	(25/2)	6262.8 [‡] 3	(31/2)
2301.2 [#] 2	$(17/2^+)$		4062.3 [‡] <i>3</i>	(27/2)	6363.2 [@] 2	(33/2)
2404.1 2			4217.3 2		6531.9 [‡] 4	(33/2)
2479.8 [#] 2	$(19/2^+)$		4288.6 [@] 2	$(25/2^+)$	6824.8 [‡] 4	(35/2)
2638.3 [‡] 2	$(21/2^+)$		4380.9 2		7099.6 [‡] 4	(37/2)
2918.1 2			4504.2 [#] 2		7178.9 [@] 2	(35/2)
3034.1 2			4687.9 <i>3</i>			

¹⁰¹Cd – currently in ENSDF, the HI dataset:

@ From 1996Pa30 based on syst and γ (Theta).

[†] From 1996Pa30 based on syst and γ (Theta).

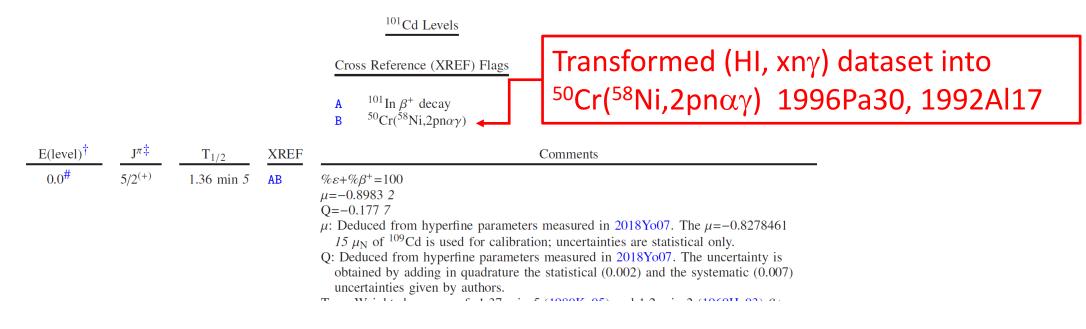
¹⁰¹Cd – currently in ENSDF, the HI dataset:

				(ΗΙ, xnγ)	1996Pa30	,1992Al17 (d	(continued) ⁺ From the ratio of the intensity γ
					$\gamma(^{101}\text{Cd})$ (continued)	lines at two angles.
${\rm E_{\gamma}}^{\#}$	${\rm I}_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	Comments
274.8 <i>1</i> 290.4 <i>1</i> 292.9 <i>1</i>	1.9 <i>1</i> 5.6 <i>3</i> 1.5 <i>1</i>	7099.6 3991.3 6824.8	(37/2) (25/2) (35/2)	6824.8 3700.8 6531.9	(23/2)		
^x 321 [†] 1							E_{γ} : Deexciting a 2957 level in 1992Al17, not seen by 1996Pa30.
322.5 2 328.7 <i>1</i> 334.0 <i>1</i>	28.2 <i>14</i> 2.9 2 2.5 2	4062.3 2127.7 3991.3	(27/2) (15/2 ⁺) (25/2)		(25/2 ⁺) (15/2 ⁺)		
x340 [†] 1	2.3 2	3991.3	(23/2)	5057.5			E_{γ} : Deexciting a 3297 level in 1992Al17, not seen by 1996Pa30.
341.1 1	23.7 12	3739.5	$(25/2^+)$		$(23/2^+)$		
345.8 [‡] 6	0.8 1	4062.3	(27/2)	3717.6			$O(n n, 2)$ is being modult in a lewith a_{1} (E2)
353.4 [†] 1	56 3	2638.3	$(21/2^+)$		$(19/2^+)$		Only 3 γs have multipolarities: (E2)
395.7 <i>1</i> 464.7 <i>1</i>	3.3 2 2.4 2	3034.1 6077.4	(31/2)	2638.3 5612.7	$(21/2^+)$ (29/2)		
485.7 [†] 1 492.3 1 502.4 1	72 <i>4</i> 4.9 <i>3</i> 3.9 8	2284.8 6105.0 2301.2	$(19/2^+)$ (31/2) $(17/2^+)$	1799.0 5612.7	$(15/2^+)$	(E2)	B(E2)(W.u.)=0.160 19
512.9 <i>1</i>	4.7 3	4504.2	(17/2)	3991.3			

¹⁰¹Cd – the updated version:

Adopted Levels, Gammas

 $Q(\beta^{-}) = -7292 \ 12$; $S(n) = 9713.2 \ 23$; $S(p) = 4987 \ 6$; $Q(\alpha) = -456 \ 5 \ 2021Wa16$


Q(\varepsilon p)=2087 18, S(2n)=22048.0 22, S(2p)=8232 5 (2021Wa16).

The current evaluation uses the previous one performed by J. Blachot in 2006.

A 15-min activity assigned to 101 Cd by 1966Bu05 via 340-MeV p on cadmium was not observed by 1970Hn03. The Sn(p,3pxn) yield ratio of activities 15 min/1.2 min < 0.004 (1970Hn03).

1973SiZP reports preliminary results from a ${}^{92}Mo({}^{12}C,3n\gamma)$ reaction performed at $E({}^{12}C)=56$ MeV. 1980Ka25 showed that some of the levels assigned to ${}^{101}Cd$ by 1973SiZP were ${}^{101}Ag$ levels, therefore these unpublished data were not considered.

Theoretical calculations: 2011Li48, 1997Pa20, 1996Pa30, 1992A117, 2019Sa51, 2019Ve02.

¹⁰¹Cd – the updated version:

⁵⁰Cr(⁵⁸Ni, 2pn $\alpha\gamma$) dataset:

Levels comment: J^π: From 1996Pa30 based on systematics, band sequence, SM comparison and R_{ang}.

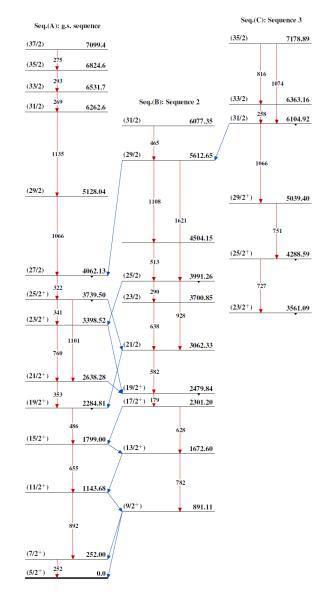
Gammas comment: Mult: Based on R_{ang}

+ explained the meaning and possible values of R_{ang}

+ provided all R_{ang} values from 1996Pa30 in comments

+ assigned a few additional Multipolarities based on the values of R_{ang}, as M1 or E2.

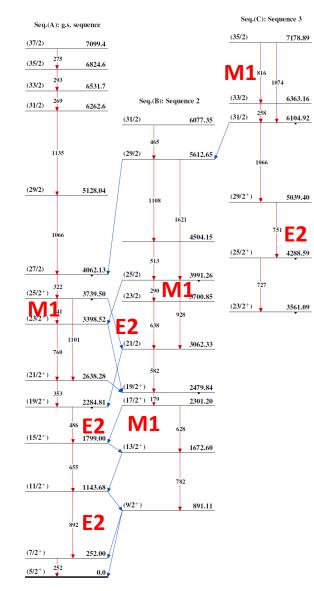
Adopted:


<u>Levels comment</u>: J^{π} : J^{π} without comments are preliminary based on $\gamma(\theta)$ in ⁵⁰Cr(⁵⁸Ni, 2pn $\alpha\gamma$) (1996Pa30).

<u>Gammas comment</u>: Mult: Based on relative γ intensity at 143° and 79° measured in the ⁵⁰Cr(⁵⁸Ni, 2pn $\alpha\gamma$) reaction (1996Pa30).

+ took over all Multipolarities from the dataset.

⁵⁰Cr(⁵⁸Ni,2pnαγ) 1996Pa30,1992Al17


¹⁰¹Cd – the level scheme

(both in the old, the new evaluation

and in 1996Pa30)

⁵⁰Cr(⁵⁸Ni,2pnαγ) 1996Pa30,1992Al17

¹⁰¹Cd – the level scheme

(both in the old, the new evaluation

and in 1996Pa30)

¹⁰¹Cd – the reviewer comment:

Reviewer comments:

- R_{ang} can only tell you if it's D or Q.
 - \Rightarrow all E2s should become Qs and all M1s should become Ds.
- We don't just accept authors Jpi assignments. We as evaluators carefully consider the data and arrive at our own recommendations for Jpi. These assignments should be supported by comments so that the reader can understand what is the basis for the Jpi.

¹⁰¹Cd – the reviewer comment:

Reviewer comments:

- R_{ang} can only tell you if it's D or Q.
 ⇒ all E2 should be Q and all M1 should be D.
- We don't just accept authors Jpi assignments. We as evaluators carefully consider the data and arrive at our own recommendations for Jpi. These assignments should be supported by comments so that the reader can understand what is the basis for the Jpi.

I totally agree with both statements, but:

- I cannot just turn E2 into Q and M1 into D and leave the J^π assignments unchanged: it looks strange to state that the (11/2+) -> (7/2+) transition is Q and not E2
- Regarding author's J^{π} assignments: I don't have anything better than "From 1996Pa30 based on systematics, band sequence, SM comparison and R_{ang} "

Options:

Option1 – severe change:

- Turn all M1s into Ds and E2s into Qs
- Consider that "From 1996Pa30 based on systematics, band sequence, SM comparison and R_{ang} " is not sufficient to set even tentative J^π values.
- \Rightarrow Remove all spin assignments and keep only a few Qs and Ds, both in Adopted and in the ⁵⁰Cr(⁵⁸Ni,2pn $\alpha\gamma$) dataset,

...but then the new evaluation will have much less information than the old one.

Option2 – minimal change:

- Turn all M1s into Ds and E2s into Qs in the ⁵⁰Cr(⁵⁸Ni,2pn $\alpha\gamma$) dataset.
- Consider that "From 1996Pa30 based on systematics, band sequence, SM comparison and R_{ang}" is sufficient to set tentative J^π values.
- \Rightarrow Keep all J^{π} assignments both in Adopted and in the ⁵⁰Cr(⁵⁸Ni,2pn $\alpha\gamma$) dataset
- \Rightarrow Keep Multipolarities as D and Q in the ⁵⁰Cr(⁵⁸Ni,2pn $\alpha\gamma$) dataset
- \Rightarrow Multipolarities as M1s and E2s in Adopted

... but then, in the ⁵⁰Cr(⁵⁸Ni,2pn $\alpha\gamma$) dataset, we will have silly situations as (11/2+) -> (7/2+), Q transition.