

Workflow of ENSDF evaluation with ENSDF Java codes

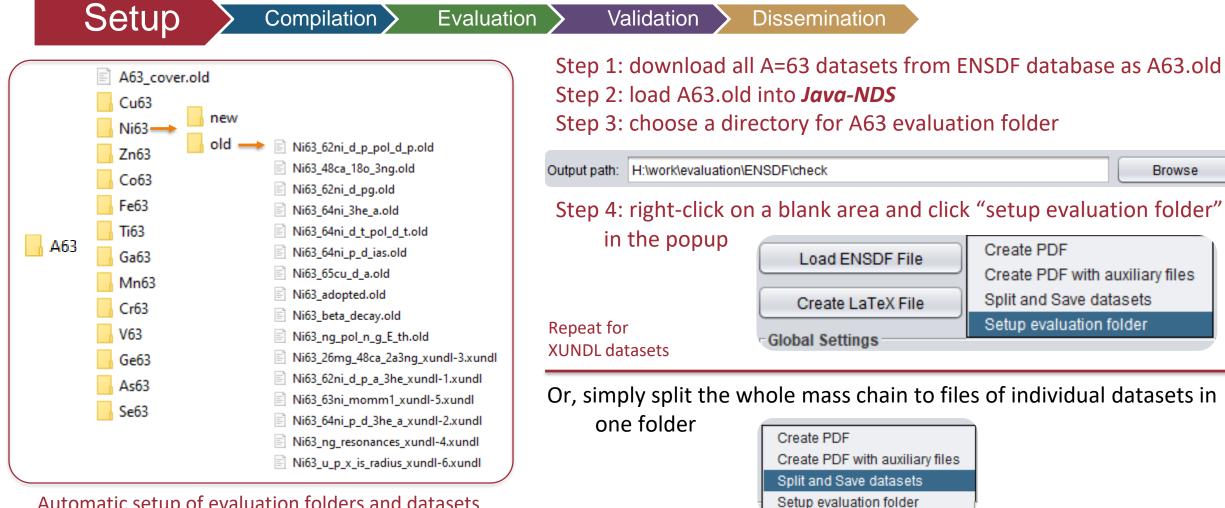
Jun Chen

25th NSDD Meeting, 15-19 April 2024

IAEA Headquarters, Vienna

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0016948.

ENSDF code development and modernization at FRIB


To streamline and automate evaluation process, ensure evaluation quality and improve evaluation efficiency

- McMaster-MSU Java-NDS (constantly improved)
- ConsistencyCheck (add format and keynumber check)
- •KeynumberCheck (included in ConsistencyCheck)
- Java-RULER (improved B(XL) calculator tool)
- Excel2ENSDF (improved operations on records)
- •AME-NUBASE viewer 1999 (improved calculator tool using AME)
- GLSC(Gamma to Level Scheme Computation: GTOL+GABS) (output with new E(level), %IB, %IG for decay)
- RadiationReport (LOGFT+RADLIST) (added calculators for logft from feeding or vice-versa)
- AlphaHF (ALPHAD+RadD)
- FormatCheck (same checking function is also included in ConsistencyCheck)

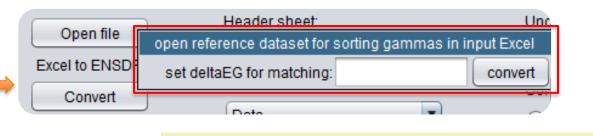
Setup of an ENSDF mass-chain evaluation

Automatic setup of evaluation folders and datasets

Compilation: converting tabulated data to ENSDF

Compilation Evaluation Setup Validation **Dissemination** Data table in the $\delta_{E2/M1} = E\lambda/M\lambda$ E_{γ} (keV) $E_i^{\#}$ (keV) $I_i \rightarrow I_f$ I_{γ}^{\dagger} R_{DCO} Δ_{asym} $2^+ \rightarrow 0^+$ 708.7(1)708.7(1) $100.0 (5.2) 1.02 (10)^a$ 0.12(1)E2pdf of a paper $2^+ \rightarrow 2^+$ 9.28 (47) $0.96 (11)^{b}$ -0.07 (3) 2.5Step 1: scan data tables in a paper using 1391.4(2)682.4(3)M1+E2 $1391.2^{\oplus}(5)$ $2^+ \rightarrow 0^+$ 0.12(3)a commercial OCR like or a free OCR like Excel table ready 1483.5 (2) 774.8 (1) $4^+ \rightarrow 2^+$ 84.7 (86) $0.98 (9)^b 0.14 (1)$ E2 $3^+ \rightarrow 4^+$ $0.91 (13) 0.63 (8)^b 0.09 (5)$ 1794.6 (2) 310.9 (3) 3.0 M1+E2for conversion Save data into a Excel OCR & file ABBYY 1 FL EG RI DCO POL MR MUL GFLAG LFLAG BAND reformat 100.0 (52) 1.02 (10) 0.12 (1) E2 2+ FineReader 9.28 (47) 0.96 (11) -0.07 (3) R 2.5 M1+E2 В 2+ 2+ R 0.12 (3 Tabula 1483.5 (2) В М 774.8 (1) E2 84.7 (86) 0.98 (9) 0.14 (1) Step 2: edit and format the Excel table 1794.6 (2) 310.9 (3) В U 0.91 (13) 0.63 (8) 0.09 (5) 3.0 M1+E2 0.16 (9) M1+E2 В U 2+ 0.78 (8) 0.56 (8)

(rename column) for *Excel2ENSDF* to read


Step 3: load the Excel table into the *Excel2ENSDF*

Step 4: if E(level) are not given, load a reference dataset (e.g., adopted from ENSDF) for level matching

Step 5: convert it to an ENSDF-format dataset file default output: *output.ens*

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Right-click Open a reference dataset for matching and placing gammas on "Open" in input Excel file with no levels being given

4 11 (42)

0.82 (10) 0.04 (2)

0.29

M1+E2

В

U

Compilation: editing/merging ENSDF data with Excel

Setup Compilation

Evaluation

Validation > D

Dissemination

Excel2ENSDF also reads an ENSDF dataset and converts it to an Excel table **ENSDF to Excel**

Just load the ENSDF dataset and it will automatically recognize it.

OUT DT		CT. CNCKOI	. шело	 CED.	. 11	 12.23	<u>лт</u> .	-26	20 M	<u>к</u> ш.,	1 . W	D01	001	, IQII	2141			
3NI cL	E, J\$from Adop	ted Level																1
3NI - L	1291.93 10	9/2+															E	
3NI - G	1204.7 1		0+Q															
3NI2 G	A2=+0.39 1 \$	A4=-0.07																1
3NI cG	\$R{-AC}=1.33	{17}																
3NI L	2183.46 14	11/2+															• • E	
3NI - G	891.5 1	93.6 28	D+Q														3	
3NI2 G	A2=+0.15 1 \$	A4=-0.14																
3NI cG	\$R{-AC}=1.24	{16}																
3NI L	2813.59 17	13/2+															• • E	
3NI G	630.1 1	100.0 34	D+Q														3	
3NI2 G	A2=-0.07 3 \$	A4=-0.07																
3NI cG	\$R{-AC}=1.07	{13}																
3NI - G	1521.9 4	40.0 23																
3NI2 G	A2=+0.17 1 \$	A4=-0.19	2															
3NI cG	\$R{-AC}=0.96	{17}																,

А	В	С	D	E	F	G	Н	- I	J	K
EL	JPI	LFLAG	BAND	CL	ELI	JI	ELF	JF	EG	RI
87.22	5/2-			E,J\$from A	Adopted Levels.					
1291.93(10)	9/2+	E	E		1291.93(10)	9/2+	87.22	5/2-	1204.7(1)	
2183.46(14)	11/2+	E	E		2183.46(14)	11/2+	1291.93(10)	9/2+	891.5(1)	93.6(28)
2813.59(17)	13/2+	E	E		2813.59(17)	13/2+	2183.46(14)	11/2+	630.1(1)	100.0(34)
					2813.59(17)	13/2+	1291.93(10)	9/2+	1521.9(4)	40.0(23)
3650.41(19)	15/2+	E	E		3650.41(19)	15/2+	2813.59(17)	13/2+	836.8(1)	71.1(27)
					3650.41(19)	15/2+	2183.46(14)	11/2+	1467.6(3)	23.7(27)
4323.25(21)	17/2+	E	E		4323.25(21)	17/2+	3650.41(19)	15/2+	672.8(1)	60.5(25)
					4323.25(21)	17/2+	2813.59(17)	13/2+	1510.8(3)	24.8(18)
4569.17(23)	15/2+				4569.17(23)	15/2+	3650.41(19)	15/2+	919.9(2)	26.3(12)
					4569.17(23)	15/2+	2813.59(17)	13/2+	1755.4(2)	37.5(12)
					4569.17(23)	15/2+	2183.46(14)	11/2+	2385.7(5)	4.4(12)
4870.8(6)	17/2+	В	В		4870.8(6)	17/2+	2813.59(17)	13/2+	2058.3(4)	11.7(16)
5290.36(29)	(17/2+)	С	С	J\$967 g(q)	5290.36(29)	(17/2+)	4323.25(21)	17/2+	967.1(2)	16.1(31)
5539.20(25)	19/2+				5539.20(25)	19/2+	4569.17(23)	15/2+	969.7(3)	19.9(18)
					5539.20(25)	19/2+	3650.41(19)	15/2+	1888.9(Z)	38.1(16)
$\leftarrow \rightarrow$	Header Dat	ta Dat	a_by_ga	mma D	ata_by_band	Intensity	_Matrix Ga	mma_Feedings	Band_on	ly_ascending
_			- ,-5		- ,-		-		_	-

Open file ENSDF to Excel Convert

Default output: *output.xls*

original ENSDF dataset

data values and comments

Includes everything from the dataset:

Can be converted back (~100%) to the

label after an ENSDF is loaded

Extracts ENSDF data into tabulated data for different uses

- Enables side-by-side (column) comparison and check for values of different datasets, e.g., gamma-ray energies, intensities
- Enables flexible and fast data editing with Excel,
 - e.g., to remove (add) values of a record, simply delete (insert) its column in Excel then convert the table back to ENSDF

٠

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Evaluation: a least-squares fit to E\gamma values

Setup

Compilation > Evaluation

Validation > Dissemination

GLSC (Gamma To Level Scheme Computation) computes E(level) based on input Eγ values and uncertainties and it uses assumed uncertainties if not given.

🛃 GTOL settings		-	
Set∆Eγ based on RI rar	nge or decimal digits in l	Ey for empt	y ΔΕγ
O RI range	No. of decimal		set∆Eγ
lower RI upper RI	digits	omit Ey	(keV)
	0		1.0
	1		0.5
	2		0.05
write ΔΕγ in output El	NSDF 🗌 ignore	e all Eγ with	out∆Eγ
☐ remove ∆E(level) from	m fit in output where no A	ΔEγ at all	new
	run GTOL		option

Provides an option for auto-adjustment of $\Delta E\gamma$ of poor-fitted ($E\gamma$, $\Delta E\gamma$) pairs

auto-adjust ΔEγ of poor-fit Eγ to reduce χ²/ndf to less than

Max good-fit #sigma: 2 In GLSC main window

 $\hfill\square$ Customized settings of $\Delta E \gamma$ if not explicitly given

2.0

■ New option for removing $\Delta E(\text{level})$ in the output, if there is not any full path of $(E\gamma, \Delta E\gamma)$ pairs connected to a fixed level (e.g., ground state) (this is determined by the code)

A simple case: all decaying and feeding gammas has no $\Delta E \gamma$

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

J. Chen, 2024 NSDD, 15 April 2024, Slide 6

In GLSC main window

Load files	Run
set ΔEy	Kun

Evaluation: new E(level), %lβ, %lγ in one output

Setup

Compilation > Evaluation

P

Validation

More

Dissemination

GLSC also computes $I\gamma$ normalization, level feedings (%I β) based on I(γ +ce) intensity balances, and %I γ for decay datasets.

rovides an option for making an output combining E(level) from fitting, computed %lβ	
in IB record or TI for EC) and %I γ (in %IG continuation record) in one run	

Load files		🗹 ignore "S" gamma
	Run	📃 ignore "?" gamma
set∆Eγ		🗌 reset "?" Ιγ(min=0)

In GLSC main window compare E(level) in report compare E(gamma) in report print E(gamma) matrix in report

One run gets and combines GTOL+GABS results in one output output file: GLSC_combined.out

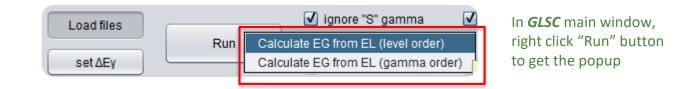
Computed %lβ is simply from I(γ+ce) intensity balance and will overwrite the existing value and uncertainty. It must be checked and verified the new value and uncertainty are not unexpected (e.g., numbers, uncertainty format) before adopting them.

Particularly, g.s. feeding, which might be expected to be obtained differently.

🕌 More Settings	_		×
Settings □ reorder DPs in report by: ○ EP ○ EI ○ EF □ put uncertainty in brackes in report file □ remove ΔE(level) from fit in output where no ΔEv at all ✓ replace IB (B-) or TI (EC) with calculated ones in GLSC com new option	bined	output	

Evaluation: a tool to get $E\gamma$ from level-energy difference

Setup


Compilation > Evaluation

Validation > Dissemination

Scenarios when $E\gamma$ needs to be calculated from level-energy difference:

- All E(level) values are precise with uncertainties but Eγ values are rounded numbers. All Eγ should be re-calculated from level-energy difference
- Some Eγ values are precise with uncertainties and some are rounded numbers. E(level) can be obtained from a fit to those precise Eγ values. Those rounded Eγ values should be re-calculated from level-energy difference

GLSC has a tool to calculate $E\gamma$ with no uncertainty from level-energy difference between its initial and final level energies if they have uncertainties.

Output files:

calcEG.rpt: contains all details about each gamma

										 	1
<u> </u>			Gamma	energies calcul	ated from le	vel-energy diff	erence	es (ordered	by EL)		
##Gamma E	G(calc)	EG(inr	ut) diff	RI	RT	E E			JF	MULT	FLAGS
# 1 29.€	56 8	29.66	1 -0.00	420 36	29.656	8 0.0		5/2+	5/2-	E1	
#2 4.2	60-11	4.251	0.01		33.916	8 29.65		7/2+	5/2+		
# 3 33.9	16 8	33.91	1 0.01		33.916	-80.0		7/2+	5/2-	E1	
#4 24.6	23 12	24.63	1			9		9/2+	7/2+	M1+E2	bd
#5 28.8	83 12	-28.88	1 0.00		58.539	9 29.650		9/2+	5/2+	E2	bd
# 6 20.1	40 14	20.19	3 -0.05		78.679	10 58.539		7/2-	9/2+	E1	bX
#7 44.7	63 13	44.77	2 -0.01	29 7	78.679	10 33.910		7/2-	7/2+	E1	
#8 49.0	23 13	49.02	2 0.00		78.679	10 29.650		7/2-	5/2+	E1	bd
#9 78.e	79 10	78.67	2 0.01	35 4	78.679	10 0.0		7/2-	5/2-	E2 (+M1)	
#10 67.3	79 23	67.37	2 0.01	11.9 14	125.918	21 58.539		11/2+	9/2+	M1+E2	
≢ 11 92.0	02 23	92.05	7 -0.05	5.0 15	125,918	21 33.910	8	11/2+	7/2+	[E2]	· · · · · X

calcEG.out: a new dataset with new Eγ from level-energy difference (only those Eγ values with no uncertainties are overwritten).

Evaluation: a tool to average values in comments

Setup

Compilation > Evaluation

Validation

Dissemination

editable area for adding,

removing, editing,

copying/pasting data

X

ConsistencyCheck has a handy tool for extracting data values in an ENSDF comment (or **any free-format text**) and calculating their average

				values
Merge input files into a single file				Values
Save datasets to individual files	average clear	Uncertainty Limit 🔘 25	5 💿 35 🔿 99 🔿 other	
Save datasets to files by nuclide				
Create new Adopted Dataset	average T Data points of T record			
Create a combined dataset	* (a,p g) by DSAM * (a,pn g) by DSAM		weight=10.37% weight=0.24%	
Clean up input ENSDF files		0.57(3)	weight=56.44% weight=1.20%	
Convert RI for Adopted	* Coulomb excitation by DSAM		weight=31.75%	
Average values in comments	Averaging results:			
Open Setup and Merging Tools	weighted average:	0.585(23) 0.585(34) chi**2/(n-1)=2.248	(internal) (external) [critical=3.017]	
Open average tool window	unweighted average: (of all values)	0.83(27) chi**2/(n-1)=0.356		
Open 80-column wrapping tool In ConsistencyCheck main	suggested adopted result: (Weighted-Of-All)	0.59(4)		
window, right click a blank area to get the popup	<pre>### weighted average comment: 63CU cL T\$weighted average of (63CU2cL (a,pn g), 0.57 ps {I3} comment in the comment is a comment.</pre>			m

Average values listed in an averaging comment

63CU5cL {I+7-6} from B(E2) / = 0.0355 {I16}

63CU cL T\$weighted average of 0.57 ps {17} from (|a,p|g) by DSAM, 1.9 ps 63CU2cL {1+6-3} from (|a,pn|g) by DSAM, 0.57 ps {13} from (|g,|g') by nuclear

63CU4cL and 0.61 ps {I4} from Coulomb excitation by DSAM. Other: 0.54 ps

63CU3cL resonance fluorescence, 0.52 ps {I+24-17} from (d, {+3}He|g) by DSAM,

Takes any list of data points separated by ",", ";", or "and", or combination. Each data point is like,

1.9 ps {I+6-3} or 1.9 ps +6-3

(please let me know if you find a kind of format that can't be processed)

New option to run V.AveLib and display its results (not default)

Just right click "average" to get all results

Evaluation: a tool to edit and wrap an ENSDF comment

Setup

Compilation > Evaluation

Validation > Dissemination

ConsistencyCheck has a handy tool for editing and wrapping a long ENSDF comment to 80-column format with ease

Merge input files into a single file

Save datasets to individual files

Save datasets to files by nuclide

Create new Adopted Dataset

Clean up input ENSDF files

Average values in comments

In ConsistencyCheck main window, right click a blank area

to get the popup

Open Setup and Merging Tools Open average tool window Open 80-column wrapping tool

Convert RI for Adopted

🕌 Wrap up comment lines to 80-column format \times 63CU cL E\$From (p,|g):E=res where available, which are based on precise E|g data measured by 1986De14 (but t 63CU2cL authors); others are from a least-squares fit to |g-ray energies with uncertainties for levels connected with those |g rays or from transfer reactions if no E|g data, unless otherwise noted editable area wrap lines copy output clear input clear output 63CU cL E\$From (p,|g):E=res where available, which are based on precise E|g 63CU2cL data measured by 1986Del4 (but they are not explicitly listed by the 63CU3cL authors); others are from a least-squares fit to |g-ray energies with 63CU4cL uncertainties for levels connected with those |g rays or from transfer 63CU5cL reactions if no E|g data, unless otherwise noted.

Useful for editing a long ENSDF comment without worrying about the 80-column limit (when using a text editor)

New 80-column formatted comment is ready to be copied and pasted back into an ENSDF dataset

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Evaluation: a tool to calculate a single B(XL)

Setup

Compilation > Evaluation

Validation > Dissemination


Java-RULER has a handy tool for calculating a single B(XL) based on a part of ENSDF record lines

> Update Briccs in output path Set assumed uncertainties Set error-propagation limit Set number of samples for MCEP Set uncertainty limit for rounding Open display of MCEP plots Open calculator of T12 and MR

In Java-RULER main window, right click a blank area to get the popup

Java-RULER works on an ENSDF dataset to calculate B(XL)(W.u.) values and insert them into the output dataset. This is needed only for the "Adopted Levels, Gammas" dataset

- Copy & paste ENSDF lines of a level and its gammas to be calculated for
- It also has options to calculates T1/2 or MR from measured B(XL)
- For calculations based on a B(XL)up value, the record line of its final level is also needed
- New improvement for extracting B(XL) values in comments

Evaluation: a tool to calculate a single logft (1)

Setup

Compilation > Evaluation

Validation

Dissemination

RadiationReport has a new handy tool for calculating a single B(XL) based on a part of ENSDF record lines

In RadiationReport main window, right click a blank area to get the popup

open simple LOGFT calculator open LOGFT calculator for ENSDF

RadiationReport works on an ENSDF decay dataset to calculate all radiations as well as logft values. Note that the recommended program for adopted logft is BetaShape.

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

🕌 Calculate a single logft 🛛 - 🛛 🗙	🗖 As
logft calculator ?	bas
Uncertainty Style:	ma
load parent info from ENSDF or type below	L It c
parent: 63ZN or A= 63 Z= 30	val
E(level)= 0 J ^π = 3/2-	L It c
T _{1/2} = 38.49 5 m 🔻	ind
Q-value= 3366.4 15 keV	
decay mode: 🔘 g ⁺ 💿 _{٤/β} +	
calculate logft of a final levelE(level)= 0.0 J^{T} = $3/2$ -%I(total)= 83.4 6	click here for detailed results
calculate logft	
logft= 5.403 4 detailed results	
calculate branching	
For ⁶³ Zn ³⁰ EC/B+ decay to ⁶³ Cu ²⁹ *** logft=5.4025(36) =6.6425(32) (calculated as 1st Unique) *** average decay energy=1040.12(97) *** %l(β ⁺)=79.69(58) %l(ε)=3.712(46)	

- A simple logft calculator for calculating a single logft based on parent and daughter level data entered manually or loaded from an input dataset
- It can also calculate a beta feeding for a given logft value
- It compares calculated logft with systematics and indicates possible decay types

uncerta	inties of 1	esults a	re in ENSI)F style ***						
Parent JPI=	3/2- fir	al-level	JPI=3/2-	*allowed*						
Total decay	energy	=3366.4	15	BR(%)=83.4	6	pa	rtial Tl	/2 (s) =27	69	20
End-of-poin	t(B+) EMAX	=2344.4	15							
Average ene	rgy(B+) EAV	7 =1040.1	10	EAV/EMAX=0	.4437	5				
EC/B+	=0.0466	5	log(EC/B+)	=-1.332	5	ECK/B+		=0.04129	17	
ECK/ (EC+B+)	=0.0395	4	ECL/ (EC+B+	-) =0.00431	5	EC (M+)	/ (EC+B+)	=7.52E-4	8	
I (B+)	=79.7	6	I(EC)	=3.71	5					
log(t)	=3.4423	32	log	(f0) =1.9602	17					
log(f0*t)	=5.403	4	f0*t	=2.527E	5 21					
log(fl*t)	=6.6425	32	(calculat	ed as 1st fo	orbidder	unique)			
Systematics	of logft v	values (2	023TU02):							
	SUE	PERALLOWE	D DJ=0 DE	PI=NO	logft	=3.17	to 3.53			
	ISOSPIN	FORBIDDE	N DJ=0 DE	PI=NO	logft	=6.66	to 10.9	2		
	GAN	OW-TELLE	R DJ=1 DE	PI=NO	logft	=2.66	to 9.05	***		
		ALLOWE	D DJ=0 DE	PI=NO	logft	=2.98	to 12.5	3 ***		
		ALLOWE	D DJ=1 DE	PI=NO	logft	=2.57	to 12.3	7 ***		
FIRST-	FORBIDDEN N	ION-UNIQU	E DJ=U DE	1=1E5 Z<80	-					
FIRST-	FORBIDDEN N	ION-UNIQU	E DJ=1 DE	PI=YES Z<80	logft	=5.90	to 20.0	8		
	RST-FORBIDI	-			-		to 12.7			
CROOM	FORBIDDEN N	ION-UNIQU	E DJ=2 DE	PI=NO	logft	=10.92	to 14.2	3		

Evaluation: a tool to calculate a single logft (2)

Setup

Compilation > Evaluation

Calculate logft of a dataset

Validation > Dissemination

– 🗆 X

RadiationReport has a new handy tool for calculating a single B(XL) based on a part of ENSDF record lines

In RadiationReport main window, right click a blank area to get the popup

open simple LOGFT calculator open LOGFT calculator for ENSDF

RadiationReport works on an ENSDF decay dataset to calculate all radiations as well as logft values. Note that the recommended program for adopted logft is BetaShape.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

load an EN	SDF	or copy ar	nd paste an E	NSDF dataset	into the te	xt area below	Col 2		clea	ar
63CU 63ZN 63ZN P 0 63CU L 669.6	EC+B+ DECA 3/2 68 4 1/	-		74KL02,1971(.49 M 5	GIZP,1969	BO15ENSDF 3366.4				
63CU E	7.3	5	0.95 6	5.80 3		8.2	5			
			е	ditable	area					
copy/p	aste h	ere								
	1. D	SID li	ine							
	2. Pa	arent	t recor	d line						
	3 14	، امرید	- Cocord	line an	d its d	decay r	ecord li	no		
	J. L		ccora	inic un	u its t	accuyit		ne		
calculate (● Logft () BR		Uncertainty Lir	mit 💿 35	i () 99 () ot	her		cle	a
or 63Zn30 EC/	/B+ decay t	0 63Cu2	9							
for 63Zn30 EC/	/B+ decay t	- 63Cu2 	9 ********** 1 JPI=1/2-							
For 63Zn30 EC/ 63CU L 669.6 Parent JPI=3 cold> 63CU E	/B+ decay t 68 4 1/ 3/2- fin	0 63Cu2 2- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 ############ 1 JPI=1/2- 5 0.95	*allowed*	3	8.2	5	•••••		
For 63Zn30 EC/ 63CU L 669.6 Parent JPI=3 cold> 63CU E new> 63CU E Total decay End-of-point	<pre>/B+ decay t</pre>		9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15	*allowed* 6 5.80 6 5.800 BR(%)=8.2	3 +26-28 5	8.2 9.2 9.2	5 5			
For 632n30 EC/ 63CU L 669.6 Parent JPI=3 fold> 63CU E new> 63CU E Total decay	<pre>/B+ decay t</pre>		9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15	*allowed* 6 5.80 6 5.800	3 +26-28 5	8.2	5 5		•••••	
for 63Zn30 EC/ 63CU L 669.6 Parent JPI=S fol> 63CU E inew> 63CU E Total decay End-of-point Average ener	/B+ decay t 68 4 1/ 3/2- fin energy t(B+) EMAX rgy(B+) EAV		9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15 8	*allowed* 6 5.80 6 5.800 BR(%)=8.2 EAV/EMAX=	3 +26-28 5 0.4373	0.2 0.2 partia 6	5 5 1 T1/2 (s) 7	=2.82E4	•••••	
or 632n30 EC, 63CU L 669.6 Parent JPI=3 old> 63CU E new> 63CU E Total decay End-of-point Average ener EC/B+ ECK/(EC+B+)	<pre>/B+ decay t 68 4 1/ 3/2- fin energy t(B+) EMAX rgy(B+) EAV =0.1315 =0.1030</pre>		9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15 8 log(EC/B+ ECL/(EC+B	*allowed* 6 5.80 6 5.800 BR(%)=8.2 EAV/EMAX=() =-0.881 +) =0.01126	3 +26-28 5 0.4373 5 12	0.2 0.2 partia 6	5 5 1 T1/2 (s) 7	=2.82E4	•••••	
Tor 63Zn30 EC, 63CU L 669.6 Parent JPI=3 cold> 63CU E Inew> 63CU E Total decay End=of=point Average ener EC/B+ ECK/(EC+B+)	/B+ decay t 68 4 1/ 3/2- fin energy t(B+) EMAX rgy(B+) EAV		9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15 8	*allowed* 6 5.80 6 5.800 BR(%)=8.2 EAV/EMAX=	3 +26-28 5 0.4373	0.2 0.2 partia 6	5 5 1 T1/2 (s) 7	=2.82E4	•••••	
or 632n30 EC, 63CU L 669.6 Parent JPI=3 old> 63CU E new> 63CU E Total decay End=of=point Average ener EC/B+ ECK/(EC+B+) I(B+) log(t)	<pre>/B+ decay t 68 4 1/ 3/2- fin energy t(B+) EMAX rgy(B+) EAV =0.1315 =0.1030 =7.3 =4.449</pre>	co 63Cu2 2- al-leve: 7.3 7.3 =2696.' =1674.' 7 =732.4' 14 11 5 27	9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15 8 log(EC/B+ ECL/(EC+B I(EC) log	*allowed* 6 5.80 6 5.800 BR(%)=8.2 EAV/EMAX=0) =-0.881 +) =0.01126 =0.95 (f0) =1.350	3 +26-28 5 0.4373 5 12 6 1	0.2 0.2 partia 6	5 5 1 T1/2 (s) 7	=2.82E4	•••••	
or 632n30 EC, 63CU L 669.6 Parent JPI=3 old> 63CU E new> 63CU E Total decay End=of=point Average ener EC/B+ ECK/(EC+B+) I(B+) log(t)	<pre>/B+ decay t 68 4 1/ 3/2- fin energy t(B+) EMAX rgy(B+) EAV =0.1315 =0.1030 =7.3</pre>	co 63Cu2 2- al-leve: 7.3 7.3 =2696.' =1674.' 7 =732.4' 14 11 5 27	9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15 8 log(EC/B+ ECL/(EC+B I(EC) log	*allowed* 6 5.80 6 5.800 BR(%)=8.2 EAV/EMAX=() =-0.081 +) =0.01126 =0.95	3 +26-28 5 0.4373 5 12 6 1	0.2 0.2 partia 6	5 5 1 T1/2 (s) 7	=2.82E4	•••••	
<pre>or 632n30 EC, 63CU L 669.6 Parent JPI=3 old> 63CU E new> 63CU E Total decay End-of-point Average ener EC/B+ ECK/(EC+B+) I(B+) log(t) log(t0*t)</pre>	<pre>/B+ decay t /B+ decay t 68 4 1/ 3/2- fin energy t(B+) EMAX rgy(B+) EAV =0.1315 =0.1030 =7.3 =4.449 =5.800</pre>		9 1 JPI=1/2- 5 0.95 5 0.95 7 15 8 log(EC/B+ ECL/(EC+B I(EC) log f0*	*allowed* 6 5.80 6 5.800 BR(%)=8.2 EAV/EMAX=0) =-0.881 +) =0.01126 =0.95 (f0) =1.350	3 +26-28 5 0.4373 5 12 6 1 19 4	8.2 8.2 partia 6 ECK/B+ EC(M+)/(EC	5 5 1 T1/2 (s) 7	=2.82E4	•••••	
<pre>or 632n30 EC, 63CU L 669.6 Parent JPI=3 old> 63CU E new> 63CU E Total decay End-of-point Average ener EC/B+ ECK/(EC+B+) I(B+) log(t) log(t0*t)</pre>	<pre>/B+ decay t 68 4 1/ 3/2- fin energy t(B+) EMAX rgy(B+) EAV =0.1315 =0.1030 =7.3 =4.449 =5.800 =6.844</pre>		9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15 8 log(EC/B+ ECL/(EC+B I(EC) log f0* (calcula	*allowed* 6 5.80 6 5.800 BR(%)=8.2 EAV/EMAX=0) =-0.881 +) =0.01126 =0.95 (f0) =1.350 t =6.325 ted as 1st :	3 +26-28 5 0.4373 5 12 6 1 19 4	8.2 8.2 partia 6 ECK/B+ EC(M+)/(EC	5 5 1 T1/2 (s) 7	=2.82E4	•••••	
<pre>pr 63Zn30 EC, Bacture L 669.6 Parent JPI=3 bld> 63CU E 1 tem> 63CU E End=of=point Average ener EC/B+ ECK/(EC+B+) I(B+) log(t) log(f0*t) log(f1*t)</pre>	<pre>/B+ decay t /B+ decay t 68 4 1/ 3/2- fin energy t(B+) EMAX rgy(B+) EAV =0.1315 =0.1030 =7.3 =4.449 =5.800 =6.844 of logft v</pre>	- 	9 1 JPI=1/2- 5 0.95 5 0.95 7 15 7 15 8 log(EC/B+ ECL/(EC+B I(EC) log f0* (calcula	*allowed* 6 5.80 6 5.800 BR(\$)=8.2 EAV/EMAX=1) =-0.881 +) =0.01126 =0.95 (f0) =1.350 t =6.325 ted as lst ;	3 +26-28 5 0.4373 5 12 6 1 19 4 5 5 5	8.2 8.2 partia 6 ECK/B+ EC(M+)/(EC	5 5 1 T1/2 (s) 7 =0.116 +B+) =0.001	=2.82E4	•••••	

Similar to Simple Calculator

□ Easier usage by copy/paste

Evaluation: a tool to calculate a single Hindrance Factor

- <u>Setup</u>
- Compilation Evaluation

Validation

Dissemination

AlphaHF has a handy tool for calculating nuclear radius parameter r₀ or HF for a single alpha-decay branch

Calculate r0 and HF for alpha decay	_		×
Load ENSDF File(s) user input r0: Uncertain Limit	ty 🔍 :		
Calculate rules for non-numerical uncertainty simple tool		other	
Output path: H:\work\evaluation\ENSDF\check nessage		Bro	owse
** Java program for calculating r0 and HF of alpha decay (update 1, 15	/2023)	**	
** Java program for calculating r0 and HF of alpha decay (update 1, 15	/2023)	**	
** Java program for calculating r0 and HF of alpha decay (update 1, 15	/2023)	**	
** Java program for calculating r0 and HF of alpha decay (update 1, 45	/2023)	**	
** Java program for calculating r0 and HF of alpha decay (update 1, 15	/2023)	**	

AlphaHF works on an ENSDF alpha-decay dataset to calculate nuclear radius parameter r₀ or Hindrance factors for all decay branches

<u><u></u></u>	
R ₀ and HF cal	lculator for α decay
Uncertainty Style: (● ENSDF ု real-value
α emitter:	or A= Z=
T _{1/2} =	S V
%α=	
Q_=	keV
-	to (outrop plate, D0
calculate/interpolat %l_(g.s.)=	
	per 100 α decay
	calculate R ₀
R0=	
calculate HF to a le	vel
E(level)=	%I _a =
input R ₀ =	fm
	calculate HF
	calculate Hr

AlphaHF

Alternative to ALPHAD for calculating HF

Alternative to RadD for calculating or interpolating/extrapolating r₀

Evaluation: a tool to extract ce data for BriccMixing

Setup

Compilation > Evaluation

Validation > Dissemination

Lots of ce data (conversion coefficients, subshell ratios, etc) are given in comments and evaluators are required to run BriccMixing with those data to get mixing ratio

Excel2ENSDF has a tool to extract ce data listed in each individual **gamma comment and continuation record** and write them into an output file in the format of input file for the BriccMixing program.

The output file can be read by the BriccMixing to calculate mixing ratio for each gamma listed in the file.

In *Excel2ENSDF* main window, right click a blank area to get the popup

167YB G 213.19 4 86 5M1	0.399	6	5	 	- d	- -
167YB2 G %IG=3.7 4						
167YB cG \$E g=213.19 {I4}, I g=86 {I5} (1975VyZY)						
167YB cG \$E g=213.20 {I4}, I g=39 {I2} (1976Me06)						
167Y <mark>82 G EKC=0.36 7</mark>						
167YB cG \$K:L1:L2:L3=31 {I6}:4.13:0.41: <0.1 (1975VyZY)						
167YB cG \$K:L1:L2:L3=1.23:0.16: ?0.02:<0.01 (1971Ab04)						

ce data in the continuation record and comment of 213-keV gamma in the input ENSDF dataset

extracted ce data entries that can be read by BriccMixing

167YB G 213.19 4 86 5 M1 0.399 167YB 213.19 4 6 7 A E1+M2 0 1 # NsrKey Shell IccVal Unc Type Entry* K 0.36 7 A A A A Entry* L1/L3 41.0 82 R A A A 1975Vy2Y* L1/L2 10.0 20 R A </th <th>/ *NEW</th>	/ *NEW
E1+M2 0 1 # NsrKey Shell IccVal Unc Type Entry* K 0.36 7 A Entry* L1/L3 41.0 82 R 1975Vy2Y* L1/L2 10.0 20 R 1971Ab04* L1/L2 8.0 16 R Entry* L2/L3 4.10 82 R 1975Vy2Y* K/L2 76 15 R 1971Ab04* K/L3 310 62 R 1975Vy2Y* K/L1 7.5 15 R	167YB G 213.19 4 86 5 M1 0.399
# NsrKey Shell IccVal Unc Type Entry* K 0.36 7 A Entry* L1/L3 41.0 82 R 1975Vy2Y* L1/L2 10.0 20 R 1971Ab04* L1/L2 8.0 16 R Entry* L2/L3 4.10 82 R 1975Vy2Y* K/L2 76 15 R 1971Ab04* K/L2 62 13 R Entry* K/L3 310 62 R 1975Vy2Y* K/L1 7.5 15 R	167YB 213.19 4
Entry* K 0.36 7 A Entry* L1/L3 41.0 82 R 1975VyZY* L1/L2 10.0 20 R 1971Ab04* L1/L2 8.0 16 R Entry* L2/L3 4.10 82 R 1975VyZY* K/L2 76 15 R 1971Ab04* K/L2 62 13 R 1971Ab04* K/L3 310 62 R 1971Ab04* K/L3 5 15 R	E1+M2 0 0 1
Entry* L1/L3 41.0 82 R 1975VyZY* L1/L2 10.0 20 R 1971Ab04* L1/L2 8.0 16 R Entry* L2/L3 4.10 82 R 1975VyZY* K/L2 76 15 R 1971Ab04* K/L2 62 13 R 1971Ab04* K/L3 310 62 R 1971Ab04* K/L3 5 15 R	# NsrKey
1975Vy2Y* L1/L2 10.0 20 R 1971Ab04* L1/L2 8.0 16 R Entry* L2/L3 4.10 82 R 1975Vy2Y* K/L2 76 15 R 1971Ab04* K/L2 62 13 R Entry* K/L3 310 62 R 1975Vy2Y* K/L1 7.5 15 R	Entry*
1971Ab04* L1/L2 8.0 16 R Entry* L2/L3 4.10 82 R 1975Vy2Y* K/L2 76 15 R 1971Ab04* K/L2 62 13 R Entry* K/L3 310 62 R 1975Vy2Y* K/L1 7.5 15 R	Entry*
Entry*L2/L34.1082R1975VyZY*K/L27615R1971Ab04*K/L26213REntry*K/L331062R1975VyZY*K/L17.515R	1975VyZY*
1975VyZY* K/L2 76 15 R 1971Ab04* K/L2 62 13 R Entry* K/L3 310 62 R 1975VyZY* K/L1 7.5 15 R	1971Ab04*
1971Ab04* K/L2 62 13 R Entry* K/L3 310 62 R 1975VyZY* K/L1 7.5 15 R	Entry*
Entry* K/L3 310 62 R 1975VyZY* K/L1 7.5 15 R	1975VyZY* K/L2 76 15 R
1975VyZY* K/L1 7.5 15 R	1971Ab04* K/L2 62 13 R
	Entry* K/L3 310 62 R
1971Ab04* K/L1 7.7 16 R	1975VyZY* K/L1 7.5 15 R
	1971Ab04* K/L1 7.7 16 R

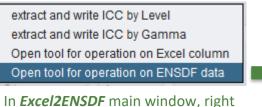
ICC_summary.rpt

Evaluation: batch operations on ENSDF records

Setup

> Evaluation

Validation > Dissemination


Evaluators occasionally encounter situations like:

- □ All intensities need to multiply a factor
- All energies need to add a constant or append a text like "+SN"

Compilation

- All values in A record need to move to B record
- All E(gamma) values need to be de-corrected for recoil energy
- Or, more complicated like: all "E(p)" placed in "S" record need to be converted to E(level)=E(p)*factor+S(p) and then re-placed in level record

Excel2ENSDF has a tool to make batch operations on ENSDF records

In *Excel2ENSDF* main window, right click a blank area to get the popup

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

🛃 Make operation on record data i — 🗌 🗙	
Operation on record in an ENSDF dataset	Record that need operation
Uncertainty Limit: 💿 35 🔵 99 🔵	operation
Operation on record:	
🔾 Add 🔵 Subtract 💿 Multiply 🔵 Divide	
O Append (end) O Append (pre) O De-recoil EG	Available
○ Replace ○ Use expression, like +1.23(4)*0.23(4)	operations
one operation for each record (last set) use expression for multiple operations	
const or text for op:	
reset all e.g., 1.23(4) or +SN reset	
Put result in field:	Set a new place for
convert relative Ig to %BR from each level	value after operation
Do operation	

Evaluation: auto-grouping data of various reactions&decays

Compilation > Evaluation

Validation > Dissemination

Ni63 new

Ni63_ng_pol_n_g_E_th.ens
 Ni63_adopted.ens
 Ni63_beta_decay.ens
 Ni63_64ni_3he_a.ens
 Ni63_48ca_18o_3ng.ens
 Ni63_26mg_48ca_2a3ng.ens
 Ni63_62ni_d_pg.ens
 Ni63_64ni_p_d.ens
 Ni63_62ni_a_3he.ens
 Ni63_ng_resonances.ens
 Ni63_62ni_d_p_pol_d_p.ens

Setup

- Ni63_64ni_d_t_pol_d_t.ens
- Ni63_65cu_d_a.ens

ConsistencyCheck

matches & groups levels and gammas from input datasets of various reactions and decays

LEVEL**********************************	63NI L 517.897 30 3/2-		t
*new XREF new tags	63NIX L XREF=AEFHIJKL		
*new XREF old tags	63NIX L XREF=AEFHIJKL		😑 63.mrg
#old XREF in Adopted	63NIX L XREF=AEFHIJKL		
63CO B- DECAY>A A	63NI L 517.8 6 3/2-		
62NI(N,G), (POL N,G) $E=TH>E$ E	63NI L 517.899 30 3/2-		
62NI(D,P),(POL D,P)>F F	63NI L 515 5 3/2-		
62NI(A, 3HE)>H H	63NI L 518		
64NI(P,D)>I I	63NI - L 518		
64NI(D,T),(POL D,T)>J J	63NI L 518 3/2-		
64NI(3HE,A)>K K	63NI L 518 3/2-		
65CU (D, A)>L L			*** possible JPI=1/2,3/2,5/2,7/2,9/2,11/2,13/2,15/2,17/2-
63CO B- DECAY>A A	63NI B 0.11 8.9		
62NI(N,G),(POL N,G) E=TH>E E	63NI cL J\$spin=3/2 also from g g(q) in 1964Co13.		
62NI(D,P),(POL D,P)>F F	63NI cL E\$others: 518 (1970Li03,1970Tu02,1977St07),		
62NI(D,P),(POL D,P)>F F		, 0.276 (1977St07), 0.32	
62NI(D,P),(POL D,P)>F F			
64NI(P,D)>I I			
64NI(D,T),(POL D,T)>J J			
64NI (3HE, A)>K K	63NI cL E\$other: 520 {I40} (1968Ru02).		
64NI (3HE, A)>K K	63NI cL S\$other: 0.64 (1968Ru02).		
	- 63NI G 362.40 8 100		
63CO B- DECAY>A A	63NI G 362.3 5 100		
62NI(N,G), (POL N,G) = TH > E E	63NI G 362.40 8 100 63NI2 G %IG=0.107 22		
63CO B- DECAY>A A	63N12 G %1G=0.107 22 63NI cG E\$weighted average of 362.1 {I2} (1970GaZQ)		
62NI(N,G), (POL N,G) E=TH>E E	63N1 G 430.71 5 2.4		
	63NI G 430.71 5 2.4		
62NI(N,G), (POL N,G) E=TH>E E	63NI cG Eşother: 430.7 {I3} (1970GaZQ).		LG-430./I FL-0/.225 0F-
	- 63NI G 517.61 31 30 6		EG=517.61 FL=0.0 JF=1/2-
62NI(N,G), (POL N,G) E=TH>E E	63NI G 517.61 31 30 6		
62NI(N,G), (POL N,G) E=TH>E E	63NI cG Eşunweighted average of 517.3 {I3} (1970GaZ		
62NI(N,G), (POL N,G) = TH>E E	-63N12cG (1992Ha21).	2) and 01/101 (11)	
	CONTROO (ISSUNGEL)		

All data and comments from various reactions and decays for a level (and its gammas) are gathered and seen in one screen. No need to jump across individual datasets back and forth.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Evaluation: auto-making a preliminary Adopted dataset

Validation

Setup

Ni63 new

- Ni63_ng_pol_n_g_E_th.ens
- Ni63_adopted.ens
- Ni63_beta_decay.ens
- Ni63_64ni_3he_a.ens
- Ni63_48ca_18o_3ng.ens
- Ni63_26mg_48ca_2a3ng.ens
- Ni63_62ni_d_pg.ens
- Ni63_64ni_p_d.ens
- Ni63_62ni_a_3he.ens
- Ni63_ng_resonances.ens
- Ni63_62ni_d_p_pol_d_p.ens
- Ni63_64ni_d_t_pol_d_t.ens
- Ni63_65cu_d_a.ens

63NI L 2183.5 3 (11/2+,13/2+) 3.6 PS 6
63NIX L XREF=BCL(2165*)
63NI cL J from {+48}Ca({+18}0,3n g).
63NI G 891.56 10 100 D+Q D
63NI cG E\$weighted average of 891.5 {I1} from ({+48}Ca,2 a3n g) and 891.70
63NI2cG {I16} from ({+18}0,3n g)

NOTE: this is only a very preliminary Adopted dataset with only an **initial assessment by the code**, which need to be checked and verified by the evaluator.

ENSDF format and cons	istency check 03/11/2024		- 🗆 ×
Load ENSDF File(s)	(a single file of multiple ENSDFs or le	oad multiple files)	View groups
Start Checking	Merge input files into a single file	gam 🗌 .gle 🗹 .mrg	🗹 .avg 🗹 .fed
	Save datasets to individual files		
Output path: H:\work\evalu	Save datasets to files by nuclide		Browse
message	Create new Adopted Dataset		
** Program for chec	Create a combined dataset	sistency (update 03/1	1/2024) **
	Clean up input ENSDF files		
right-click	Convert RI for Adopted		
for popup	Average values in comments		
	Open Setup and Merging Tools		
	Open average tool window		
	Open 80-column wrapping tool		

Evaluation

ConsistencyCheck

Dissemination

generates a preliminary new Adopted dataset combining all input data of various reactions and decays and selecting the best values from an initial **automatic** assessment for JPI, T1/2, EG, RI, MUL, MR

like automatically averaging of all available values (T1/2, EG, RI), generating needed comments, and placing them into the new dataset

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Compilation

Validation: ENSDF format check

Setup

Compilation)

Evaluation > Validation

Dissemination

FormatCheck: a new ENSDF Java code to replace the legacy FMTCHK Fortran code that lacks of maintenance

<u>위</u>	_		×
Load ENSDF File(s) (a single file of multiple ENSDFs or load multiple files) Start Checking Image: Start Checking			
Output path: H:\work\evaluation\ENSDF\check	Br	owse	
message			
** Program for checking ENSDF format (update 03/12/2024) **			
Check report file: <i>formatcheck.fmt</i>			

This is the stand-alone program for checking ENSDF format

- Includes all checking items (exceptions below) covered in FMTCHK (please let me know if some items are missing)
- Remove unneeded check items in FMTCHK due to file I/O restrictions, like end-of-file check
- Remove no-longer-correct error messages for outdated format requirements, like, in "XREF=L(3034*)", * is marked as in error since it is expected to be like "(*3034)". Either is good now.
- Remove check for inconsistency, like unmatched DSIDs.
 Those are items checked by ConsistencyCheck but not format issues.
- Add lots of new check items (still growing), like unbalanced brackets (anywhere).

The same code is also integrated into ConsistencyCheck with its report file named like "63.fmt" for A=63 nuclides (for all checkings at one time)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Validation: NSR keynumber check for format and relevance

Setup

Compilation

Evaluation > Validation

Dissemination

KeynumberCheck: scan and check all NSR keynumbers or keynumber-like strings against format errors and irrelevance

- **Format error** in keynumber is easy to be made but is also easy to be found (by the code)
- □ Irrelevance check is done through searching for close mass numbers in the NSR abstract retrieved on-thefly from the NSR database for each valid keynumber.
 - It generates a list of "irrelevant" keynumbers but it is preliminary based on the current searching method
 - Evaluator must check and filter out those incorrectly selected as "irrelevant" by looking into the papers
- Normally, a few to tens of irrelevant keynumbers can be found in a mass chain evaluation. Those are mostly due to misprint of one letter or one digit.
- A stand-alone version is available, and it has also been integrated into *ConsistencyCheck* with its report file named like "*63_keynumber.rpt*" for A=63 nuclides (for all checkings at one time)

example

- Line 712: ----- line#=49 in 156SM: 252CF SF DECAY 1970Jo20 : <W> probably irrelevant. Check if typo. #title=Four-Parameter Measurements of Isomeric Transitions in {+252}Cf Fission Fragments

Validation: in- and cross-dataset inconsistency check

Setup

Compilation

Evaluation > Validation

Dissemination

ConsistencyCheck: initially developed to check in- and crossdataset inconsistencies, but has become a toolkit of many other checking and utility functions

Subscription ENSDF format and consistency check 03/11/2024	—	×
Load ENSDF File(s) (a single file of multiple ENSDFs or load multiple files)	View	groups
Start Checking Outputs: 🗹 .rpt 🗌 .lev 🗌 .gam 🗌 .gle 🗹 .mrg 🗹	Z .avg	J.fed
Output path: H:\work\evaluation\ENSDF\check	Brow	se
message		
** Program for checking ENSDF format and data consistency (update 03/11/2 check report file: 63.fmt for A=63 nuclide	2024) *	*

- Mostly found inconsistencies are those between JPI values in Adopted Levels and JPIs in individual datasets with comments saying those JPIs from Adopted Levels
- Similar inconsistencies are also easily made for adopted E(level), T_{1/2}, gamma branching ratios, etc., and are checked by this code.
- Inconsistencies in physics are also checked, for example like Mult=M1+E2 for a transition from 3+ to 2-. Many such possible physics inconsistencies are considered in the code and will be checked.
- Other possible inconsistencies: unmatched DSIDs in XREF list and source dataset, unmatched XREF tag in Adopted Levels, unmatched parent data with Adopted, etc.
- This code also digs into comments to search for inconsistently quoted values.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Dissemination: merge all individual datasets

Setup

Compilation

Evaluation

Validation >

> Dissemination

ConsistencyCheck: has a tool to merge all updated individual datasets in an evaluation folder into a single ENSDF file in order (the same order in the XREF list in Adopted Levels)

Average values in comments Open Setup and Merging Tools
Save datasets to files by nuclide Create new Adopted Dataset Create a combined dataset Clean up input ENSDF files Convert RI for Adopted Average values in comments Open Setup and Merging Tools
Create new Adopted Dataset Create a combined dataset Clean up input ENSDF files Convert RI for Adopted Average values in comments Open Setup and Merging Tools
Create a combined dataset Clean up input ENSDF files Convert RI for Adopted Average values in comments Open Setup and Merging Tools
Clean up input ENSDF files Convert RI for Adopted Average values in comments Open Setup and Merging Tools
Convert RI for Adopted Average values in comments Open Setup and Merging Tools
Average values in comments Open Setup and Merging Tools
Open Setup and Merging Tools
Open average tool window
Open 80-column wrapping tool

In *ConsistencyCheck* main window, right click a blank area to get the popup

🕌 Setup folders and Merge datase	ts	-		×
Setup Evaluation Folders				
🔘 from a mass chain	Load MassChain		Oat	
◯ from a nuclide list	Load Nulide List		Set	
outfile extension: old 	new 🔾 ens 🔾 xund	9 O 1		1
path H:\work\evaluation\E	ENSDF\check			
Merge Datasets				
 merge input datasets 	Load ENSDFs			
O merge all in folders	Select Folders		Merg	e

Output: "merged.ens"

Select the evaluation folder, e.g., A=63

Dissemination: generate print-ready pdf from an ENSDF file

Setup

Compilation >

Evaluation >

Validation Dissemination

McMaster-MSU Java-NDS:

- □ It is first officially released in 2017 for generating print-ready pdf from ENSDF datasets for the journal of Nuclear Data Sheets and online web display.
- It has been constantly maintained and improved based on evaluators' feedbacks.
- There is no major change since last release (v2.1 in December 2021), but it has been constantly updated with minor changes and bug fixes. The updated version is always uploaded to the NSDD GitHub in time (most recent version: 12March2024).
- A test version of Java-NDS for the new JSON format is also available for testing. Please let me know if you are interested to get a copy to try.

Produced by
Its National Nuclear Data Center Brookawer National Laboratory Upton, NY 11973-5000, USA for The International Network of Nuclear Structure and Decay Data Evaluator Content Structure and Decay Data Evaluator Content Structure and Decay Data Evaluator NOTE Were EVSIFS to survey and complete data for special subulations or calculations, if important that the as correct and complete as possible. We arge all auers who find errors may be corrected. The computer files are also available for online access and applications.

Nuclear

a Shoote

olume 194, April 202

ELSEVIER

All ENSDF Java codes can be found and downloaded at the NSDD GitHub for ENSDF Analysis and Utility Programs https://github.com/IAEA-NSDDNetwork

