

STATUS REPORT ON NUCLEAR STRUCTURE AND DECAY DATA ACTIVITIES AT OAK RIDGE NATIONAL LABORATORY

25th Technical Meeting of the Nuclear Structure and Decay Data (NSDD) Network

Caroline Nesaraja, Michael Smith

Members:

- Michael Smith: PI Nuclear Data Program Nuclear astrophysics experiment and data
- Caroline Nesaraja: Research Staff ENSDF evaluator
- Larry Zhang: Student nuclear astrophysics data

Activities:

- Nuclear Structure Data (ENSDF)
- Nuclear Astrophysics Data

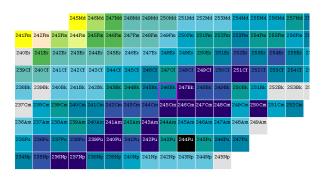
Nuclear Structure Data:

Mass Chain Evaluation

ORNL responsibility: A=241-249, A=69

Nuclear Structure and Nuclear Astrophysics Group

Nuclear Data Group


About Research Areas ▼ Staff Publications

Mass Chain Current ENSDF Database (from NNDC website)

241	C.D. Nesaraja. NDS 130, 183 (2015)	(Lit cut-off Sept. 2015)
242	M.J. Martin & C.D. Nesaraja. NDS 186, 263 (2002)	(Lit cut-off Dec. 2021)
243	C.D. Nesaraja & E.A. McCutchan. NDS 121, 695 (2014)	(Lit cut-off Sept. 2013)
244	C.D. Nesaraja. NDS 146, 387 (2017)	(Lit cut-off Aug. 2017)
245	C.D. Nesaraja. NDS 189, 1 (2023)	(Lit. cut-off Feb. 2023)
246	C.D. Nesaraja (post review edits submitted to NNDC)	(Lit. cut-off Jul. 2022)
247	C.D. Nesaraja. NDS 125, 395 (2015)	(Lit. cut-off Mar. 2014)
248	M.J. Martin. NDS 122, 377 (2014)	(Lit. cut-off Sept. 2014)
249	C.D. Nesaraja. (to be published)	(Lit. cut-off Oct. 2023)
69	C.D. Nesaraja. (submitted to NNDC)	(Lit. cut-off Apr. 2023)

FTE (ENSDF): 1.0

Mass Chain	Evaluator	#Nuclides	Status
69	Nesaraja	13	Review
246	Nesaraja	9	Editorial Review
249	Nesaraja	11	To be published

A=66 and 137 : post-review pipeline

Review one mass chain a year

Index for A=69					
Nuclide	Data Type	Page	Nuclide	Data Type Pag	
Ec.	Skeleton Scheme for A=60	. 4 1		U(p,F) 90	
gr _e	Adopted Levels	. 7	iiGa ₃₈	Adopted Levels, Gamman	
gMa _{es} .	Adopted Levels	. 1		⁴⁹ Zn β ⁻ decay (56.4 min) 116 ⁶⁹ Zn β ⁻ decay (13.753 h) 115	
gre _e	Adopted Levels (f) Ma g: decay (f) Be(f) Ku:X) (f) N((f) Ge:X) (Us:X)	10 11 12		⁶⁰ Ge e decay 11: ⁶⁰ Ni(¹ Li,3ny) 12: ⁶⁰ Zn(n,py),(n,p) 12: ⁶⁰ Zn(p,y) 12: ⁶⁰ Zn(p,p) 12: ⁶⁰ Zn(p,p) (n,p),(p,p),(p,RIAR 13:	
ffCe _E	Adopted Levels, Gammas **Peg: decay B(**Ni,2pr) **Bo(**SEXX) **Ni(**Ge:X) U(s:P) U(s:P)	14 16 17 19 20		62 zs(An) 13 62 zs ² He.d) 13 60 Ca(x,y') 23 60 Ca(x,n'y) 34 60 Ca(x,n'y) 34 60 Ca(x,n'y) 34 60 Ca(x,n'y) 34 60 Ca(x,n'y) 34 60 Ca(x,n'y) 34 60 Ca(x,n'y) 34	
#N4:	Adopted Levels, Gammas ⁶⁰ Co μ decay ⁶⁰ Ni IT decay (0.439 μt) ¹³ (⁶¹ Ni μ) ¹³ (⁶¹ Ni μ)	22 25 30 32 33	eli Ge ₃₇	¹⁷ Ge(d, 7le) (pol d ¹ He) 15 U(n,X), U(p,X) 15 Coulomb excitation 15 Adopted Levels, Gammas 15 ⁴⁰ As a decay 19 ⁴⁰ Ge IT decay (5.1 μn) 20	
gc _u	*Bet **Ge XO Adopted Levels, Gummas **Sig if decay (11.4 s) **Sig if decay (15.5 s) **Sig if decay (3.5 s) **Zig if decay	36 36 42 46 46 50 52		**Ge IT decay (2.81 µs) 30 **EZ(x x x) 20 **Ga(x x x) 22 **Ge(x x) 23	
@Za _{sa}	*2n(*6CaXy) *2x(*25UXy) *2x(*25UXy) *18pp(*2xXy) *21UxY *21UxF) *21U(*6EXy) *Coulomb excitation	. 62 . 63 . 64 . 65	33As ₃₆	Adopted Levels, Gammas 34 **Ble # decay 27 **Gc(*\(^{1}\)S_{2}\(^{1}	
	Adopted Levels, Gammas ⁴⁰ Cu p ⁻ decay ⁴⁰ Zn IT decay (13.753 h) ⁴⁰ Zn(t,p)	. 67 . 73 . 76 . 78	Se ₃₅	Adopted Levels, Gammas 30 *Be(*Se, *B*ey) 31 *BC(\$15, 3ptr) 31	
	⁶⁵ Zn(n,y),(pol n,y)E=thermal ⁶⁵ Zn(d,p),(pol d,p) ⁷⁵ Zn(p,d)	83	338c ₃₄	Adopted Levels 32 ⁶⁹ Ka e decay (27.9 ms) 33	
	⁷⁰ Zn(d,t) ⁷⁰ Zn(⁷ He,o)	87	76Kr33	Adopted Levels 33	
	70Zn(256U,Xy)		References		

	Index for A=246				
Nuclide	Data Type	Page	Nuclide	Data Type	Page
²⁴⁶ ₉₂ U ₁₅₄ · · · · · · · · · · · · · · · · · · ·	Skeleton Scheme for A=246 Adopted Levels tentative Adopted Levels, Gammas ²⁴⁴ Pru(14) ²⁴⁴ Pru(16,0,160γ) Adopted Levels, Gammas ²⁴⁶ Pru (³ E o,160γ)	7 7 8 8 11 12 15 15 15 18	²⁴⁶ ₉₇ Bk ₁₄₉	248 Cm/209B; 211Biy) Coulomb excitation Adopted Levels Adopted Levels 220 Fm a decay Adopted Levels 220 Ma a decay	79 80 81 81 82 83
²⁴⁶ Cm ₁₅₀	Adopted Levels, Gammas ²⁴⁶ Am β decay (39 min) ²⁴⁸ Bk β decay ²⁴⁹ Bk β decay ²⁵⁰ Cfα decay ²⁴⁶ Cm(ρ,d') ²⁴⁶ Cm(p,l)	. 21 . 40 . 44 . 66 . 70 . 73	246Fm ₁₄₆	Adopted Levels, Gammas 246Md e decay: 4.4 s 208 Pb; 460 Ar; 2ny): 1.53 s Adopted Levels 260 Bi; 460 Ar; 3n): 4.4 s	85 89 90 93

		Index for A=249					
Data Type	Page	Nuclide	Data Type	Page			
Skeleton Scheme for A=249	5		²⁴⁸ Cm(α,t),(³ He,d)				
Adopted Levels:tentative	6	²⁴⁹ ₉₈ Cf ₁₅₁	Adopted Levels, Gammas	110			
Adopted Levels:tentative	8		²⁴⁹ Es ε decay ²⁵³ Fm α decay ²⁴⁹ Cf(d.d')	131			
Adopted Levels:tentative	9	$^{249}_{\ 99}\text{Es}_{150}\ .\ .$	²⁴⁹ Cf(d.d') ²⁴⁹ Cf(²⁰⁸ Pb, ²⁰⁸ Pb'γ) Adopted Levels, Gammas	145			
253 Cf α decay 248 Cm(n,γ)E=th:primary γ's 248 Cm(n,γ)E=th:secondary γ's	25	$^{249}_{100}$ Fm $_{149}$	253Md α decay (6 min) Adopted Levels, Gammas	147			
248 Cm(d,p) 248 Cm(a,2 He) 248 Cm(13 C,12 Cy)	37	²⁴⁹ Md ₁₄₈ .	²⁵³ No α decay	153			
²⁴⁸ Cm(¹⁶ O, ¹⁵ Oγ) ²⁴⁸ Cm(¹⁸ O, ¹⁶ Onγ)	46		Adopted Levels 253Lr α decay (1.61 s) 253Lr α decay (0.63 s)	160			
²⁴⁸ Cm(¹⁸ O, ¹⁷ Oy)	55 61	²⁴⁹ No ₁₄₇ .	²⁰³ Tl(⁴⁸ Ca,2ny)	162			
Adopted Levels, Gammas	64		Adopted Levels	165			

NUCLEAR DATA SHEETS

OAK RIDGE
National Laboratory

A=246

A=249

Other Activities related to Nuclear Data

Nuclear Science Advisory- Nuclear Data Subcommittee was formed in 2022

to assess challenges, opportunities, and priorities for effective stewardship of nuclear data.

First Report of the Nuclear Data Charge Subcommittee of the Nuclear Science Advisory Committee

September 19, 2022

Subcommittee Chair: Lee Bernstein (UC-Berkeley/LBNL)

Subcommittee Members:

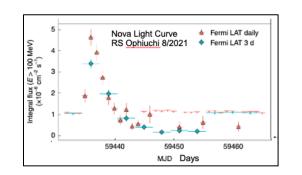
Friederike Bostelmann (ORNL), Mike Carpenter (ANL), Mark Chadwick (LANL),
Max Fratoni (UC Berkeley), Ayman Hawari (NC State), Lawrence Heilbronn (UT-Knoxville),
Calvin Howell (Duke), Jo Ressler (LLNL), Cynthia Keppel (Jefferson Lab),
Arjan Koning (IAEA), Ken LaBel & Tom Turflinger (NASA & Aerospace),
Caroline Nesaraja (ORNL), Syed Qaim (FZJ), Catherine Romano (Aerospace),
Artemis Spyrou (MSU), Sunniva Siem (Univ. of Oslo), Cristiaan Vermeulen (LANL),
Ramona Vogt (LLNL/UC Davis)

Second Report of the Nuclear Data Charge Subcommittee of the Nuclear Science Advisory Committee

February 4, 2023

Subcommittee Chair: Lee Bernstein (UC-Berkeley/LBNL)

Subcommittee Members:

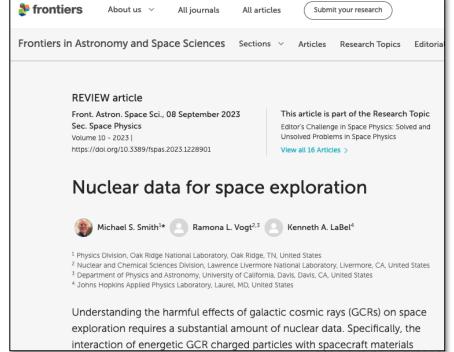

Friederike Bostelmann (ORNL), Mike Carpenter (ANL), Mark Chadwick (LANL),
Max Fratoni (UC Berkeley), Ayman Hawari (NC State), Lawrence Heilbronn (UT-Knoxville),
Calvin Howell (Duke), Jo Ressler (LLNL), Cynthia Keppel (Jefferson Lab),
Arjan Koning (IAEA), Ken LaBel & Tom Turflinger (NASA & Aerospace),
Caroline Nesaraja (ORNL), Syed Qaim (FZJ), Catherine Romano (Aerospace),
Artemis Spyrou (MSU), Sunniva Siem (Univ. of Oslo), Cristiaan Vermeulen (LANL),
Ramona Vogt (LLNL/UC Davis)

Nuclear Astrophysics Data:

Assessing uncertainties of reactions critical for nucleosynthesis in Stellar Explosions

Thermonuclear Reaction Rate Uncertainties




Nova RS Ophiuchi erupted in 8/2021

• new thermonuclear reaction rate uncertainties are currently being tested in an uncertainty quantification (UQ) analysis of nova nucleosynthesis

Nuclear Astrophysics Data Needs Summarized

• two review articles published with over 330 references

