

Nuclear Data Group Report LBNL+UCB

November 2022 - March 2024

M. Shamsuzzoha Basunia

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Nuclear Data Group Members (LBNL+UCB)

Staff:

- Lee Bernstein (UCB + LBNL) (Group Leader)
- Shamsuzzoha Basunia (LBNL)
- Mathis Wiedeking (LBNL) since January, 2024
- Bethany Goldblum (UCB+LBNL)
- Aaron Hurst (UCB)
- Jon Batchelder (UCB)
- Andrew Voyles (UCB)
- Josh Brown (UCB)
- Thibault Laplace (UCB) (Honorary Member)

Postdoc and Graduate students:

2 postdocs and 8 graduate students from other supports

Activities:

ENSDF:

- Responsibility: 33 mass chains: 21-30, 81, 83, 90-93, 166-171, 184, 186, 187, 191-193, 210, 211, 212, 213, 214
- One third of these are over 12-years (since cut-off):
 - **25**, 27, 29, <u>30</u>, <u>81</u>, 93, 166, 168, <u>169</u>, 184, 187

Databases:

- BEApR: Global database/evaluation of beta-delayed and direct heavy charged particle (p, a, cluster, fission) emitters (Batchelder)
- pyEGAF, (n,n'γ) Baghdad Atlas, γ-X- coin (and decay), paceENSDF (Hurst)
- Library of Scintillator Properties and their Response to Recoil Nuclei (Goldblum, Laplace)

Measurements:

- High-energy (n,x), (p,x) reactions for Isotope Production (Voyles)
- GENESIS (Gamma Energy Neutron Energy Spectrometer for Inelastic Scattering) (n,n'γ) (Brown)
- SM: ⁶⁰Ni(p,γ), SM: ⁵⁰Cr(p,γ), OM: ^{193,194}Ir, etc. (Wiedeking)
- Nuclear Data for Microcalorimetry (Voyles, Hurst, Basunia, Bernstein)

BERKELEY LAB Lawrence Berkeley National Laboratory

Mass chain evaluation and related activities

Nuclear Data Sheets:

- A=24, Basunia, Chakraborty, NDS 186, 3, 2022
- A=191, Basunia, NDS 195, 368, 2024
- A=222, Singh, et. al. (ICTP, IAEA workshop), NSD 192, 315, 2023
- A=231, Singh, Tuli, Browne, NSD 185, 560, 2022

Submitted (Oct, 2022 – Mar, 2024):

- A=81 (Basunia 15 nuclides) received rev. com.
- A=25 (Basunia 8 nuclides, Chakraborty 1 from India)

Pipeline:

A=30 (Basunia, Chakraborty) – addressed reviewer's comments

Reviewed:

Two mass chains

Berkeley Evaluated Alpha & proton Radioactivity (BEApR) database,

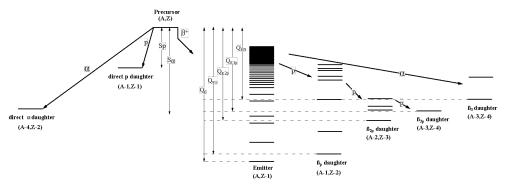
Horizontal Evaluation

Jon Batchelder

- Provides an overview of spontaneous, charged particle decay for exploration of systematics, relationships between Energy and Branching Ratio (BR), and competition between decay modes
 - Many nuclei have only been observed via heavy charged particle emission
- Recommended values will be updated monthly
- All references, including proceedings, reports etc. provided (unlike NSR).
- Explicit organization by Energy, BR, T_{1/2} etc.
- Organized by T_z/α -chain

Spontaneous comments from the research community regarding BEApR

"Thanks for this great compilation" - Alex Brown, FRIB


Received comments/suggestions from

Futoshi Minato, Kyushu University, Japan

John Hardy (Texas A&M)

Rykaczewski Krzysztof (ORNL), and

Sean Liddick (MSU)

https://nucleardata.berkeley.edu/research/betap.html

Photon Strength Function (PSF) Nuclear Level Density (NLD) databases

Mathis Wiedeking

PSF database:

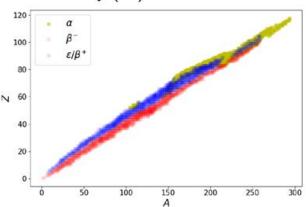
- Update of database to be released first half of 2024
- Update includes a new interface (Application Programming Interface (API) web application) which was developed.

NLD database:

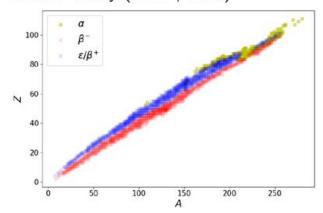
- NLD CRP recommendation (from 2023 consultant's meeting) sent to Internal research projects committee for approval.
- If approved anticipated start date October 2024

Experimental: SM: ⁶⁰Ni(p,γ), SM: ⁵⁰Cr(p,γ), OM: ^{193,194}Ir, NIF - NLD on ¹³³Xe, SM (⁶³Ni, ¹⁰⁶Cd), Radiation Protection Basis of Design for SAIF.

Open-source Python library paceENSDF on PyPI


https://pypi.org/project/paceENSDF/

Aaron Hurst

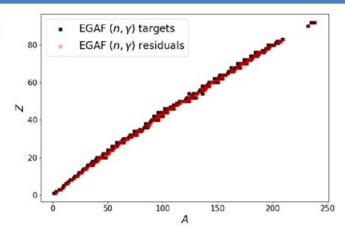


- paceENSDF: Python Archive of Coincident Emissions from ENSDF.
- Translated 3254 ENSDF-decay datasets to JSON format.
- Converted each ENSDF-decay dataset into RIPL format.
- Generated 2394 JSON-formatted coincidence datasets, i.e., only those containing γ rays.
- Developed suite of Python modules enabling interaction, analysis, and visualization of the **ENSDF-decay data** and derived **coincidence** $\gamma \gamma$ and γX -ray data.
- JSON schema keys documented extensively in README.
- 283 unit tests (multiple virtual Python3 environments).
- Installation, testing scripts, and Jupyter Notebooks.
- JSON and RIPL files bundled with software.
- Open-source (FreeBSD License) library maintained on PyPI and GitHub.
- Over 2500 downloads.

ENSDF decay (all)

ENSDF decay (with γ data)

pip install paceENSDF


Open-source Python library pyEGAF on PyPI

https://pypi.org/project/pyEGAF/

Aaron Hurst

- Translated all 245 ENSDF-formatted EGAF datasets to a new JSON format.
- Generated RIPL-format EGAF for reaction calculations.
- Developed suite of Python modules enabling interaction, analysis, and visualization of the EGAF (n, γ) data.
- Docstrings provided for all methods.
- JSON schema keys documented extensively in README.
- 224 unit tests (multiple virtual Python3 environments).
- Installation, testing scripts, and Jupyter Notebooks provided.
- ENSDF, RIPL, and JSON files bundled with software.
- Open-source (FreeBSD License) library maintained on PyPI and GitHub.
- Over 800 downloads.

The Evaluated Gamma-ray Activation File (EGAP) is one of the most comprehensive resources for thermosticon-copying centa. This detables contains data loss approach gamma artistician subplum ensources starting on the Table (1998) and the Carlo (1998) and the Car

pip install pyEGAF

Nuclear Data Library for Scintillators

B. Goldblum and T. Laplace

Intended for two main uses:

A web-accessible reference to useful scintillation detector materials

An aid in developing fundamental theories or empirical relations between basic

material properties and scintillation performance.

https://scintillator.lbl.gov/

Inorganic scintillators:

 Initially developed under a DHS project focused on the discovery and development of new inorganic scintillating materials

Organic scintillators:

- New addition focused on scintillator response to neutrons and charged particles
- Important for modeling detector response for nuclear physics and applications

GENESIS (Gamma Energy Neutron Energy Spectrometer for Inelastic Scattering)

BERKELEY LAB

Josh Brown

- New neutron-induced γ/neutron emission spectra are required
 - Advanced reactor systems
 - Neutron active interrogation
- Measurement observables coupled with reaction model calculations in forward modeling approach to extract (n,n'γ) cross sections

First

C, N, O, Na, Al, Si, Fe, Cu, Pb, W, U, Pu

Follow-up

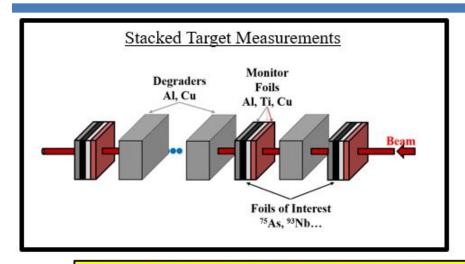
He, Li, Be, B, Cl, Cr, Mn, Ni, Ge, Br, Cd, I, Cs, La

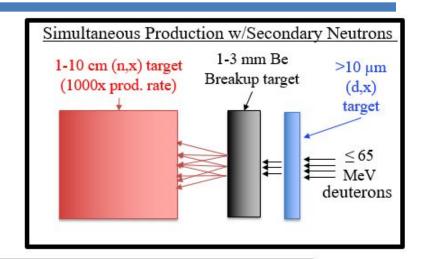
Remaining

F, Mg, P, S, Ar, K, Ca, Ti, As,

Np, Am

Kr, Mo, Sn, Sb, Xe, Gd, Bi,




- GENESIS includes HPGe detectors and organic scintillators to enable measurement of double-differential neutron and gamma emission spectra.
- Recently commissioned 7 mechanically cooled HPGe detectors as part of the ²³Na(n,n'g) cross section studies

Publication on Array Characterization: Gordon, et al; NIM A 1061, April 2024, 169120

Medical isotope production cross section measurements since 2016 Andrew Voyles

BERKELEY LAB
Lawrence Berkeley National Laboratory

We perform R&D for emerging isotopes, and develop novel paradigms to improve existing production efforts

Radionuclide (Purpose)	Reaction(s)	Radionuclide (Purpose)	Reaction(s)
¹³⁴ Ce (²²⁵ Ac PET analog)	^{nat} La(p,6n), ¹²⁷ I(¹¹ B,4n)	^{51,52m} Mn (PET imaging)	Fe(p,x)
^{236m} Np/ ²³⁶ Pu (Mass Spec. Cal.)	235,238 U(p/d,x)	²⁰² Pb (Chronology, Mass Spec.)	natTl(p,x) (w/BNL, LANL)
²²⁵ Ac (α-therapy)	$^{226}Ra(n,2n)^{225}Ra \rightarrow ^{225}Ac^*$	^{117m} Sn, ^{119m} Te (Auger Therapy)	natSb(p,x) (w/BNL, LANL)
^{64,67} Cu (Theranostic)	$^{\mathrm{nat}}\mathrm{Zn}(\mathrm{n,p})$	²¹¹ At (α-therapy)	²⁰⁹ Bi(a,x)
^{193m} Pt (Auger Therapy)	$^{\mathrm{nat}}\mathrm{Ir}(\mathrm{d,x})$	^{149,152,155,161} Tb (Theranostics)	Gd(p,x)
⁸⁶ Y (Imaging)	86Sr(p/d,x) (w/Jülich)	⁸⁶ Y (Imaging)	Zr(d,x) (w/Jülich)
⁷² As and ⁶⁸ Ge/Ga (Imaging)	⁷⁵ As(p,x) (w/BNL, LANL)	²⁰⁹ Po (RTGs)	²⁰⁹ Bi(d,2n)
²²⁹ Th / ²²⁹ Pa (²²⁵ Ac generator)	^{230,232} Th(n,2n),(p,2n),(d,xn)	⁹⁰ Mo (Beam Monitor)	⁹³ Nb(p,x)

Organizational Efforts:

Nuclear Science Advisory Committee:

NSAC - Nuclear Data Subcommittee Chair: L.A. Bernstein – Second Report of the Nuclear Data Subcommittee of the Nuclear Science Advisory Committee.
 https://www.osti.gov/servlets/purl/1959550 LLNL-TR-845408 (2023).

Nuclear Data for Fusion Energy Systems:

 Fusion energy has received an increasing amount of attention from the Biden Administration and due to the achievement of Lawson's criterion in August 2021 (Abu-Shawareb et al PRL) - L.A. Bernstein (organizer)

Fusion Nuclear Data Roundtable @White House

Office of Science & Technology Policy, May 4, 2023

Publications/Invited talks (https://nucleardata.berkeley.edu/)

- Published about 15 articles (FY 2023): (Selected ones)
 - 2023Mo19: J.T.Morrell, A.S.Voyles, J.C.Batchelder, J.A.Brown, L.A.Bernstein; Secondary neutron production from thick target deuteron breakup; Phys.Rev. C 108, 024616 (2023).
 doi: 10.1103/PhysRevC.108.024616
 - Complete β-Decay Patterns of ¹⁴²Cs, ¹⁴²Ba, and ¹⁴²La Determined Using Total Absorption Spectroscopy; M. Wolin ska-Cichocka, et al. **Phys.Rev. C 107, 034303 (2023)**. doi: 10.1103/PhysRevC.107.034303
 - 2023UdZZ: M.S.Uddin, M.S.Basunia, L.A.Bernstein, I.Spahn, B.Scholten, B.Neumaier, and S.M.Qaim,; Determination of positron emission intensity in the decay of ^{86g}Y; **EPJ Web of Conferences 284, 09003, (2023)**. doi: 10.1051/epjconf/202328409003.
 - A.M. Hurst, B.D. Pierson, B.C. Archambault, L.A. Bernstein, S.M. Tannous, "A decay datababase of coincident γ-γ and γ-X-ray branching ratios for in-field spectroscopy applications", Eur. Phys. J. (Web of Conf.) 284, 18002 (2023). https://doi.org/10.1051/epjconf/202328418002
 - J.A. Brown, T.A. Laplace, B.L. Goldblum, J.J. Manfredi, T.S. Johnson, F. Moretti, and A. Venkatraman, "Absolute light yield of the EJ-204 plastic scintillator," Nucl. Instrum. Meth. A, 1054, 168397 (2023), doi:10.1016/j.nima.2023.168397.
- Invited and contribution talks 13: (Selected ones)
 - L.A. Bernstein, Nuclear Data for Fusion Workshop, Nuclear Data for Fusion. Office of Science and Technology Policy. Washington DC. May 4, 2023.
 - J. C. Batchelder, International Conference on Proton-Emitting Nuclei (PROCON2023), Warsaw, Poland, June 25 -30, 2023
 - L.A. Bernstein, 11th International Conference on Isotopes, Investigating High-Energy Proton-Induced Reactions: Implications for Level Densities and the Pre-equilibrium Exciton Model. Saskatoon, SK Canada. July 24, 2023.
 - A.M. Hurst, invited participation at the IAEA "Consultants Meeting on Thermal Capture and Gamma Emission", October 23-25, 2023