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Talk Overview

» Motivation for studying tungsten
* R-matrix (RMPS) methodology and how we scale-up
for heavy systems. Terminology used throughout.
* Electron-impact excitation of Tungsten W I-1II
and how we compare with the CTH (Auburn)experiments
» Electron-impact ionisation of W III and assessing
the impact of ground and metastable RMPS ionisation
on impurity influx determination (SXB).
* Electron-impact excitation of Ar II by three different

R-matrix methods with an attempt to constrain uncertainty.



Tungsten is still one of the leading candidates for PFCs(plasma facing components), i.e. divertor

* Allowable impurity concentration lower for high-Z materials
* High-Z materials radiate much more than previously used materials
* Radiation significant enough to denigrate plasma performance
* Concentration needs to be less than ~1E-4 (Putterich)

* Need to accurately quantify and minimize erosion of PFC.

\/\_@ Although unwanted,
10 the impuity influx must

be categorized, which is
modelled by an SXB
ratio, which 1s 1n turn
dependent on electron
impact excitation and
effective 1onisation rates.
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One slide R-matrix/RMPS overview
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Quantifying Wall Erosion impurity influx : SXB ratio,

underpinned by accurate atomic structure, excitation & ionisati

* The intensity of a spectral line can be related to its
influx rate [Behringer PPCF 31 2059 (1989)]
* The number of ionizations per photon (S/XB) 1s

directly proportional to the impurity influx
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Note electron temperature and density dependence



Electron-impact excitation using
parallel DARC code.

« Why it is difficult ? (next slide)
« What has been done
overcome these difficulties? (end of section)
« From a structure perspective (the core of
a collisional model) we now can shift
to known NIST/experimental values before
oscillator strength determination.



Energy (eV)

Snapshot of W I

Groundstate : 4f"14 5d"4 6s"2
Method : GRASPO structure groundstate

+ 24 excited state configurations

(~7500 levels)

: Dirac R-matrix calculation
keeps 250 levels in the
close-coupling expansion

(2) Known (NIST/literature) even levels

(b) Known (NIST/literature) odd levels

(¢) & (d) unknown or at least only partially

designated even and odd levels
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: True at time
of publication, but many more
levels now known

(Quinet/Palmeri group)!!!



Compact Toroidal Hybrid (CTH) has been an invaluable test
of the electron-impact excitation dataset

* The emission was indeed
strongest in the UV!

* We identified 30 new tungsten
spectral emission lines. .

* Results in Johnson et al., Plasma;|
Physics and Controlled Fusion, |
Volume 61, 095006 (2019).

CTH cross section with probe
and UV spectrometer line of sight

Collision radiative modelingat T, =8 eV, n, = 1*10% m 3
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Temperature derived from lines within R Smyth W I adf04 file and those

measured with a Langmuir probe on the Auburn CTH experiment.

40

— ]:] ratio

35

30

25

20

15

10

Te from 255/265 line ratio (eV)

0 1 | 1
0 10 20 30 40

Langmuir probe T, (eV)




Electron-impact excitation of neutral tungsten

PHYSICAL REVIEW A

covering atomic, molecufar, and optical physics and quantum information
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Dirac R-matrix calculations for the electron-impact excitation of
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ABSTRACT -

Neutral tungsten is the primary candidate as a wall material in the divertor region of the International
Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on
precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to
characterize the influx of tungsten impurities into the core plasma. The following paper presents
detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-
Fock method, drawing comparisons with experimental measurements where available, and includes
a critical assessment of existing atomic structure data. We investigate the electron-impact excitation
of neutral tungsten using the Dirac R-matrix method, and by employing collisional-radiative models,
we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting
comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.



W Il : Dirac R-matrix calculation
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CrossMark
Abstract
Aims: tungsten has been chosen for use as a plasma facing component in the divertor for the
ITER experiment, and is currently being used on existing tokamaks such as JET. W plays an
integral role in assessing the impurity influx from plasma facing component of tokamaks and
subsequent redeposition. Together with previously calculated a neutral tungsten
electron-impact dataset this study allows us to determine neighbouring spectral lines in the
same wavelength window of the spectrometer, and detect if there is strong blending of
overlapping lines between these two ion stages as well as providing ionisation per photon
ratios for both species. The new data is to be used for tungsten erosion/redeposition
diagnostics. Methods: a significantly modified version of the GRASPO atomic structure code
in conjunction with DARC (Dirac Atomic R-matrix Code) are used to calculate the Einstein A
coefficients and collisional rates used to generate a synthetic W II spectrum. The W II
spectrum is compared against tungsten spectral emission experiments. Results: this study is
used to model the spectrum of W 11, providing the predictive capability of identifying spectral
lines from recent experiments. These results provide an integral part of impurity influx and
redeposition determination, as the 1omsation rates may be used to calculate §/XB ratios.



Overview of W ||
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Figure 1. Energy level spectrum of W 1I organised by electronic configuration (For the first 5 configurations which contribute
to the lowest-lying levels). Each horizontal line designates a specific fine structure level (taken from the NIST database).

To assure spectroscopic wavelengths, pre-diagonalisation of Hamiltonian,
energy levelsare shifted to experimental values. Easy for low levels ,

not so for excited states.



W II calculation, currently being tested against CTH

spectra at 30 eV and and a density of le+12 cm”-3.
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W |ll calculation
(Dr M McCann: submitted J Phys B)
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Figure 4. Tungsten synthetic spectra of W I (orange), W II (red), and W III (black),
for an electron temperature of 25 eV and a density of 1 x 10" cm™3. The spectra for
each of these charge states of tungsten were calculated independently, therefore the

relative line heights between charge states should not be compared.



Computational challenges

(a) For heavier systems, the code must be refactored to build large
Hamiltonians that recognise which elements interact and farm
these out to processors in a manner that achieves load-balancing

(computationally and I/O) .... easier said than achieved

(This has been achieved for the LS/Breit-Pauli codes)

(b) We need to adapt to the hardware opportunities that GPUs
(graphical processor unit) offer. R-matrix has many

dense matrix operations and these must be offloaded

to GPUS --= 20-30K channel case.



You have mentioned 10,000 channels and matrices
exceeding 100 K by 100 K, but does not the
R-matrix have to be calculated for every energy ?

10,000*10,000*100,000= 10*13 operations ..... and modern CPUs only are
of the order 10"9 operations per sec. Do you wait an hour per energy point ?

No fortunately, we can employ GPUs (Graphical Processing Units) for the
dense matrix multiplies

Hamiltonian size ( SIU,UOU -250,000)

Wik
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Excitation Summary

« W1 (published , Ryan Smyth et al 2018)
adf04 (Maxwellian averaged collision strength)
10.1103/PhysRevA.97.052705

« W Il (work completed)Nicole Dunleavy
J. Phys. B: At. Mol. Opt. Phys. 55 175002
« W III (submitted to J Phys B)Michael McCann
« W IV (Ballance et al, adf04 available,2013)
DOI: 10.1088/0953-4075/46/5/055202)



We can improve the DARC (Dirac R-matrix)
calculations in two ways

« Firstly, as the number of levels included
In a close coupling expansion expands,
dense Hamiltonians need constructed in
parallel (code development)

« Exploitation of the DRMPS method for the
DARC code. L-spinors instead of associated
Laguerre polynomials for pseudo-states.
(Hydrogen Badnell 2008)




Ionisation : LS/BP developments




If we first consider the ground and meta-stable ionisation for the
simpler cases of hydrogen and lithium, what uncertainties should we expect

as a function of principal quantum number ?

RMPS : ionisation

It is the accuracy of the excited states that can prove problematic

Neutral Hydrogen Neutral Lithium Effective lonisation
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lonisation: Increase in complexity

« Unlike ‘one-electron’ systems the ground-state

of W | : 4i*14 5d”*4 6s"2 requires direct
lonisation of 6s and 5d ionisation

— 5d*" 6s nl where n=7-14, |=0-6
— 5d*"3 652 n’I" where n=7-14, |=0-6
which amounts to several thousand TERMS in

a close coupling expansion and Hamiltonians
in excess of 500,000 by 500,000

« W2+ completed ... 5803 terms, 22,000
channels + expt.

« Plan is to move from WMN2+} — W (easier
structure)




The standard techniques, DW , Cowan HFR, configuration average
TDCC , RMPS work for the groundstate .... but for excited states ....

Plasma and Fusion Research: Regular Articles

Volume 13, 3401026 (2018)

Fig. 1

Unfortunately, the effective ionisation rates are completely dominated
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by excited state ionisation !
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Validate code with C | ionisation

Ionisation of C I
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« Constraining uncertainty on plasma diagnostics



Ar Il : Constraining uncertainty

« Ar |l chosen as a benchmark case, as
LS/Breit/Pauli, intermediate-coupling frame
transformation (ICFT) and DARC codes are
all applicable

« Do the different choices in atomic structure
(autostructure/grasp0) or code usage

affect magnetic fusion diagnostics 7
» Also completes Ar sequence, therefore ADAS
will have level-resolved GCR coefficients |



Results

—— Coll1-DARC
—— Coll2-ICFT
b Coll3-BP
S 104 \
'-'_;
g
g |
§ 105 -
i /
107 4 l.}w y \'

I v T L T T T T T r
10° 101
Excited Level - Index

Fig. 5. Calculated fractional populations in a quasi-static collisional radiative calcula-
tion for the first 40 Excited states for each collisional calculation, at T, = 7eV and n,

élDLLmimm excited state at index 1.

Note : ICFT Coll2 (unshifted to N IST) , others shifted to NIST values



Line ratio constrained to tighter
values over the earlier Fantz work.
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Fantz distribution of results given by the grey shaded area. DW (Henderson)
(green dashed) and ICFT (red solid) previously spanned a wider range.



Generate

Synthetic Spectra (purple : CTH will have other impurities
to compare |
against CTH as well as tungsten !)
Use as a
benchmark of
calculations o Experiment
@ Synthetic from BP
> 2 ® Synthetic from DARC
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Comparison of Two Ar |l calculations against CTH Spectra.
Credit:Dr. E Williamson



Thanks for your attention, questions ?









Ultimately, the electron-impact excitation and ionisation rates are
required if we to produce Generalised Collisional Radiative (GCR)

coefficients that are both temperature and density dependent.
Generalized collisional-radiative

(GCR) coefficients
* Effective ionizationrates i niationrates

CR matrix A{q+1}+
elements

v
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Effective ionization rate coefficient vs density and
electron temperature
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Fig. 8. Efcctive wnization rate coefiiceent for the onization prooess
e+ Li(1s*25°S) = Li* (157 °S) + 2¢ as a function of electron tempemature
and density. Note that the density dependence comes in through the ole

of lonization from excited states. Loch et al,, ADNDT, 92 813 (2006)
IAEA A+M Data, Nowv 18-20, 2009
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