AMPMI 2024 @ Metsätalo, University of Helsinki, Finland

Bulk, surfaces, and grain boundaries in the lifetime of cascades in W

Byeongchan Lee Kyung Hee University, Korea, July 18, 2024

경희대학교 **KYUNG HEE UNIVERSITY**

Acknowledgments

- PhD students: Younggak Shin, Vichhika Moul (Kyung Hee University)
- Collaborator: Keonwook Kang (Yonsei University)

• National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)

- Funding
- (No. 2020R1A2C201510913)
- Korea Hydro & Nuclear Power Co., LTD (No. 2022-Tech-11).

depend on grain uniformity (let alone H-P) Mechanical properties

As-sprayed

Y. J. Lee et al. | Int. J of Refractory Metals and Hard Materials 60, 99 (2016)

Pulsed electric current treatment (PECT)

of n-irradiated materials

J. Marian et al. | Nucl. Fusion 57, 092008 (2017)

Microstructure has changed though Grain boundaries remain nearly unchanged

 $32, 428$ (2013) D.E.J. Armstrong et al. | JNM 432, 428 (2013)

Is GB transparent to neutron irradiation?

Is GB transparent to neutron irradiation?

Insufficient facts always invite danger.

Primary Knock-on Atoms to simulate n-irradiated cascades PKA simulations

- Cascades
	- In periodic bulk
	- Near surface
	- Near grain boundary
		- Damage detection methods
		- Preliminary results

FS-AT / ZBL as implanted by Fikar and Schaeublin

in single crystalline bulk Irradiation damages wigner-Seitz (W-S) analysis IN SINOIA CIVSTAIIINA NUIK

H.G. Lee, S. Yoo, B. Lee, and K. Kang | Nuclear Fusion 60 (2020)

vacancies = # SIAs Total defect neutrality in periodic bulk

in W foils Irradiation damages

~ 0.01 dpa w/ 150 keV W+ @ 300K

0 2 4 6 8 10 0 200 400 600 800 1000 Temperature (K) vac int expt 0 0.2 0.4 0 200 400 600 800 1000 defect co unt / W +Temperature (K) void vac int expt (x5) "the largest loops to be predominantly of prismatic 1/2 $\langle 111 \rangle$ type and of vacancy character"

D. R. Mason et al. | J. Phys.: Condens. Matter 26 (2014) 375701 O. K. MOSUIL CO., D. FIRSTIC INTERNATION INCLUDED. POINTS: Experiment (VACIA) UPD OF VISIBLE DEFECTS. THE NUMBER OF VISIBLE DEFEC

near surface Irradiation damages

H.G. Lee et al. | Nuclear Fusion 60 (2020) Surface ~ a defect sink w/ infinite capacity α extended to the mobile of mobile α ice \sim a defect sink w/ infinite capacity

Mobile (vacancy) dislocation loop lmmobile (vacancy) dislocation network and responsible for the large population of the large population of \mathbf{r}_i

near grain boundary (GB) Irradiation damages

Common Neighbor Analysis (**CNA**) showing non-BCC atoms

Grain boundary ~ a defect sink w/ **finite** capacity

GBs absorb defects Then what?

- Possible scenarios
	- · Diffusion inside GBs
	- Dislocations
	- . Crystal growth
		- May be in the form of GB motion for small-area boundaries

Wigner-Seitz as implemented in popular tools We need defect counts

Initial state Final state

$W-SO$ with a fictitious perfect lattice

Œ

Volume-based

W-SO with a fictitious perfect lattice

fails in polycrystalline structures W-S0

Translation of reference lattice **hardly** matters

- Rotation matters!!
	- Interstitials
	- Interstitial-vacancy pair FALSE detection

100 nm x 100 nm x 300 nm PKA Energy = 300 keV @ 823K PKA location = 1nm from GB

Vacancy Interstitial

CNA+WS

 $\{\}$ 44

Nederlancy

Interstitial loops

 $\begin{array}{l} 0.51\ \mathrm{mmm} \\ 0.09\ \mathrm{mmm} \\ 0.09\ \mathrm{mmm} \\ 0.06\ \mathrm{h}^{-1}\mathrm{km} \\ \end{array}$

W

dislocation loop

Other $1/2 < 111 > <100 > <110 >$

How to separate defects in GB from those in bulk w/ defect type info?

 bcc <100>/<111> 100 nm x 100 nm x 300 nm PKA Energy = 300 keV @ 823K

defect count = $65,798$

O ps

CNA only tells you either crystalline or other

36.13 ps

defect count = $70,170$

Deep inside TABLE I. HA bond-pair analysis of the liquid Ti and ordered structures obtained from *ab initio* molecular

ISRO

CNA goes beyond non-bcc

68

 31

cna

 33

Bond Type

68

from GB Crystal growth

0 ps GB atoms : 3,771 Bulk defects : 0 36.13 ps GB atoms : 3,686 Bulk defects : 1,118

bex index

៖៖ 888 388 3^o $8²$

bcc index

OI

CNA w/ bond type results

Front view

Side view

and helps the relative contributions of the relative contributions of the local atomic contributions of the local atomi rearrangements due to ion strikes from the defect (interstitial $\sqrt{111}$ near GB microscopy (HAADF-STEM). The assumption \mathbb{R}^3 annealed film contains some scattered pore-like features (typically about 1 nm in diameter), which are visible as slightly darker regions in the HAADF-STEM images. The boundary of interest separates separates separates separates separates separates \bigcap Irradiation damages $\Box \cap \Box C$ To demonstrate more clearly the changes in the boundary mor-

 $Pf \nabla 3$ 112 $R_{\rm c}$ Pt Σ3 {112} GBs

 \sim 1 dpa w/ 2.8 MeV Au4+

C. M. Barr et al. | Sci. Adv. 8, eabn0900 (2022) **B**) The GB facets before and after irradiation. (**C**) Plots of the facet positions measured before (red) and after (blue) irradiation. The facets have primarily moved in the

End of evolution

GB energetics to find optimum

- · Crystal growth
- · Dislocations
- · Energetics
	- GB facet/surface energies
	- · GB area

Is GB transparent to neutron irradiation?

Likely… as far as GB degradation goes

GB is a defect sink, and the source of other defects

It will be interesting to see how GBs do

in the presence of transmutation and hydrogen

During irradiation Remarks

• CNA seems promising for detections of various defects including GBs

• Fine-tuning in progress

- Irradiation may stabilize the microstructure?
	- GBs may realign to reduce energy penalty
	- GB energy reduction **= grain growth?**

Future outlook

Y. Shin et al. | unpublished K. Heinola et al. | Phys. Rev. B 82, 094102 (2010)

