AMPMI 2024 @ Metsätalo, University of Helsinki, Finland

Bulk, surfaces, and grain boundaries in the lifetime of cascades in W

Byeongchan Lee Kyung Hee University, Korea, July 18, 2024

경희대학교 **KYUNG HEE UNIVERSITY**

Acknowledgments

- PhD students: Younggak Shin, Vichhika Moul (Kyung Hee University)
- Collaborator: Keonwook Kang (Yonsei University)

- Funding
- (No. 2020R1A2C201510913)
- Korea Hydro & Nuclear Power Co., LTD (No. 2022-Tech-11).

• National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)

Mechanical properties depend on grain uniformity (let alone H-P)

As-sprayed

Y. J. Lee et al. | Int. J of Refractory Metals and Hard Materials 60, 99 (2016)

of n-irradiated materials

X. Hu et al. | JNM 480 235 (2016)

J. Marian et al. | Nucl. Fusion 57, 092008 (2017)

Grain boundaries remain nearly unchanged Microstructure has changed though

D.E.J. Armstrong et al. | JNM 432, 428 (2013)

Is GB transparent to neutron irradiation?

Is GB transparent to neutron irradiation?

Insufficient facts always invite danger.

PKA simulations Primary Knock-on Atoms to simulate n-irradiated cascades

- Cascades
 - In periodic bulk
 - Near surface
 - Near grain boundary
 - Damage detection methods
 - Preliminary results

Irradiation damages in single crystalline bulk

H.G. Lee, S. Yoo, B. Lee, and K. Kang | Nuclear Fusion 60 (2020)

Wigner-Seitz (W-S) analysis

FS-AT / ZBL as implanted by Fikar and Schaeublin

Total defect neutrality in periodic bulk # vacancies = # SIAs

Irradiation damages in W foils

~ 0.01 dpa w/ 150 keV W+ @ 300K

"the largest loops to be predominantly of prismatic 1/2(111) type and of vacancy character"

Irradiation damages near surface

Mobile (vacancy) dislocation loop

H.G. Lee et al. | Nuclear Fusion 60 (2020)

Immobile (vacancy) dislocation network

Surface ~ a defect sink w/ infinite capacity

Irradiation damages near grain boundary (GB)

Grain boundary ~ a defect sink w/ finite capacity

Common Neighbor Analysis (CNA) showing non-BCC atoms

GBs absorb defects Then what?

- Possible scenarios
 - Diffusion inside GBs
 - Dislocations
 - Crystal growth
 - May be in the form of GB motion for small-area boundaries

We need defect counts Wigner-Seitz as implemented in popular tools

Based on initial atomic positions

Initial state

Final state

W-SO with a fictitious perfect lattice

Volume-based

W-SO with a fictitious perfect lattice

W-SO fails in polycrystalline structures

Translation of reference lattice **hardly** matters

- Rotation matters!!
 - Interstitials
 - Interstitial-vacancy pair FALSE detection

100 nm x 100 nm x 300 nm PKA Energy = 300 keV @ 823K PKA location = 1nm from GB

Vacancy

Interstitial

CNA+WS

11 : 1

Interstitial

Interstitial loops

Other 1/2 < 111 > < 100 > < 110 >

How to separate defects in GB from those in bulk w/ defect type info?

bcc <100>/<111> 100 nm x 100 nm x 300 nm PKA Energy = 300 keV @ 823K

defect count = 65,798

0 **ps**

CNA only tells you either crystalline or other

36.13 ps

defect count = 70,170

Deepinside

Bonded pairs	Stable liquid (2000 K)	Supercooled liquid (1700 K)	Ordered structure					
			bcc	fcc	hcp	ISRO		
1101	0.04	0.02						
1201	0.12	0.08						
1211	0.06	0.04						
1301	0.07	0.06						
1311	0.22	0.19						
1321	0.09	0.09				0.71		
1411	0.04	0.04						
1421	0.07	0.08		1.00	0.50			
1422	0.09	0.13			0.50			
1431	0.11	0.14						
1441	0.00	0.01	0.43					
1531	0.01	0.01						
1532	0.01	0.01						
1541	0.05	0.07						
1551	0.02	0.03				0.29		
1661	0.00	0.01	0.57					
				B. Lee et al. JCP 129, 024711 (2008)				

ISRO

CNA goes beyond non-bcc

68

vacancy

34

31

<110> DB

cna

33

Bond Type

Crystal growth **GB** atoms : 3,771 **Bulk defects : 0** from GB

Front view

Side view

0 ps

GB atoms : 3,686

36.13 ps

Bulk defects : 1,118

bcc index

0

CNA w/ bond type results

Irradiation damages near GB

Pt Σ3 {112} GBs

~ 1 dpa w/ 2.8 MeV Au4+

C. M. Barr et al. | Sci. Adv. 8, eabn0900 (2022)

End of evolution

GB energetics to find optimum

- Crystal growth
- Dislocations
- Energetics
 - GB facet/surface energies
 - GB area

Is GB transparent to neutron irradiation?

Likely... as far as GB degradation goes

GB is a defect sink, and the source of other defects

It will be interesting to see how GBs do

in the presence of transmutation and hydrogen

Remarks During irradiation

• CNA seems promising for detections of various defects including GBs

• Fine-tuning in progress

- Irradiation may stabilize the microstructure?
 - GBs may realign to reduce energy penalty
 - GB energy reduction = grain growth?

Future outlook

Y. Shin et al. | unpublished

K. Heinola et al. | Phys. Rev. B 82, 094102 (2010)

(110)

