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● Predictive modelling of W erosion and edge+core transport in JET, L-mode and ELMy H-mode

● Role of atomic and PWI data in W transport simulations

● Comparison of simulations and W spectroscopy in the JET divertor 

● Predicted and measured core plasma W density and radiated power

● Prospects for further studies

Outline
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n
W

● How accurate is the predicted W density in the core plasma, if the plasma conditions are known with some 
uncertainty?

→Separate the accuracy of the W transport model from uncertainties in the background (BG) plasma

● When BG plasma measurements are available, the predicted W density is affected by:

● BG plasma conditions (measurement coverage & uncertainties)
● W erosion and edge transport (here, ERO2.0 in 3D)
● W core transport (here, JINTRAC)

● In future machines or unexplored plasma scenarios,
significantly higher uncertainty is expected for the W density
due to uncertain predicted plasma conditions

Motivation: understand and predict W erosion and transport by studying a set of 

JET-ILW plasmas
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● The plasma conditions are simulated in 
EDGE2D-EIRENE [1] (JINTRAC [2]) by 
adjusting uncertain parameters to 
optimise agreement with measurements

[1] R. Simonini et al., CPP 34 368-373 (1994)
[2] M. Romanelli et al., Plasma Fusion Res. 9 3403023 (2014)
[3] J. Romazanov et al., NME 18 331-338 (2019)
[4] F. Casson et al., NF 60 066029 (2020)
[5] H. Kumpulainen et al., NME 33 101264 (2022)

While the plasma conditions are fitted to experiment, W transport is predictive
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● The plasma conditions are simulated in 
EDGE2D-EIRENE [1] (JINTRAC [2]) by 
adjusting uncertain parameters to 
optimise agreement with measurements

● W erosion and edge transport is predicted 
using ERO2.0 [3]

● The predicted W density at the pedestal 
top (ρ = 0.9) is used as the boundary 
condition for predictive W core transport 
simulations using JINTRAC

→ Earlier validation of JINTRAC W core
    

 
transport [4] extended to cover the SOL

    
 
and W erosion from ERO2.0

● No information from W diagnostics is used 
to fit the predictive W simulations

While the plasma conditions are fitted to experiment, W transport is predictive
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● JINTRAC setup:
● Background plasma diagnostics (Langmuir probes, divertor IR cameras, CXRS etc.)
● Several atomic, molecular and PWI databases in EIRENE (D. Borodin et al. this meeting)

● ERO2.0 setup:
● Effective ionisation, recombination, and photon emissivity rate coefficients from ADAS
● Sputtering and reflection yields, and the distributions of sputtered/reflected particles from SDTrimSP
● Surface concentration of Be at W divertor targets adjusted to match the measured Be II line emission
● Work in progress: SDTrimSP database of mixed-material sputtering yields to replace interpolation of pure yields

● Validation of W predictions:
● W I & W II visible divertor spectroscopy
● Soft X-ray and vacuum-ultraviolet W spectroscopy in the core plasma, integrated with bolometry and 

Z
eff

 measurements to reconstruct 2D poloidal W density profiles

What kinds of A&M and PWI data are applied in this work?
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● Non-Maxwellian high-energy tail due to charge-exchange atoms causes W erosion on non-plasma-wetted surfaces

● Recently implemented EIRENE option to output bivariate energy-angular CXN distributions (ERO2.0 studies in progress)

Energy spectrum of D0, outer vertical divertor

Maxwellian, T=154 eV
Kinetic (EIRENE)

Maxwellian, T=64 eV
Kinetic (EIRENE)

Energy spectrum of D0, outer target

Kinetic D atom impact energy spectra are calculated in EIRENE for each W surface

JPN 81472 (L-mode)
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Plasma stored energyELM crash
ELM decay

Inter-ELM phase

Time evolution during ELMs is modelled using a sequence of JINTRAC plasmas

JPN 94605 (P
aux

 = 18 MW)

Experiment (EFIT)

JINTRAC

Henri Kumpulainen et al. | AMPMI 2024 | 18 July 2024 | Page 9H. Kumpulainen et al. PPCF 2024



ERO2.0 reproduces the measured W I, but not W II, emission at the strike line
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● Possible reasons for the W II discrepancy:

● Uncertain W ionisation and photoemission rate coefficients
● Simple description of the plasma sheath (changes proposed by S. Di Genova et al. NME 2023)
● Accuracy of the simulated electric field, electron density, ion and electron temperature profiles
● Uncertainties in the analysis and interpretation of the W II measurements

● Uncertainty of W atomic data can be assessed by benchmarking with experiments

JPN 94605 (P
aux

 = 18 MW)
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W I at 400.9 nm, JET outer target W II at 434.8 nm, JET outer target



S/XB benchmark indicates that W data may partially explain the W II discrepancy

● Discrepancy on the 434.8 nm W II emission would be reduced to a factor of 5 if the photon emissivity was based on 
S/XB measurements from TEXTOR WF6 injection experiments, instead of ADF15 Mons or R-matrix calculations

Henri Kumpulainen et al. | AMPMI 2024 | 18 July 2024 | Page 11

Calculated / measured S/XB, W II at 434.8 nm

W ionisation is based on 
ADF11 year 50



● Modelling a hypothetical experiment: 
W injection sources placed in the JET divertor 
to assess W screening of different source 
locations

● Same W source in each location: 
1020 W atoms/second, initial energy 10 eV

● At the divertor targets, SOL plasma flows 
efficiently screen the small fraction of W ions 
which is not promptly redeposited

● Strong W accumulation in the core from 
W sources near the outer divertor entrance
(such as sputtering by CX atoms)

→ W II at the outer target does not affect
  

 
  the predicted core W density

ERO2.0 predicts near-perfect divertor screening of W, except near the outer 

divertor entrance

 n
W 

(m-3)

JPN 81472 (L-mode)
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W density, ERO2.0, ELM-averaged

W density, experiment [1]

[1] M. Sertoli et al., J. Plasma Phys. (2019) 85 90585050

W density, JINTRAC

JPN 97781 (P
aux

 = 34 MW)

The predicted 2D W density profile is within a factor of 2-3 of the measured W density
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Experiment [1]

   
 
                JINTRAC

               ERO2.0

JPN 97781 (P
aux

 = 34 MW)

[1] M. Sertoli et al., J. Plasma Phys. (2019) 85 90585050

W density, flux-surface averaged

separatrix

JINTRAC core transport simulations with the W boundary condition from ERO2.0

predict the core W density within a factor of 2-3

● Boundary condition: Flux-surface averaged W density 
at pedestal top (rho=0.9) from ERO2.0 predictions

● Propagating the estimated uncertainties of each 
BG plasma parameter, the predictive uncertainty of 
W in the core is roughly +200% / -70% (ELMy H-mode)

  → Consistent with the observed level of agreement

  → Description of the BG plasma most likely a
 
larger 

      
 
source of uncertainty than the transport models

Henri Kumpulainen et al. | AMPMI 2024 | 18 July 2024 | Page 14

H. Kumpulainen et al. PPCF 2024



JINTRAC matches the observed W radiation within the modelling uncertainties
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L-mode 
B    = 2.5 T
P

aux 
= 1 MW

ELMy H-mode 
B    = 2.0 T
P

aux 
= 10 MW

ELMy H-mode 
B    = 2.5 T
P

aux 
= 18 MW

ELMy H-mode 
B    = 3.45 T
P

aux 
= 35 MW
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VUV W emission from the divertor could help validate SOL W transport models

● So far, W ion transport in the SOL has only been validated indirectly
by combining edge and core W transport simulations

● Several low-charge ionisation states of W were observed 
in the JET divertor after a change in the viewing geometry 
of a VUV spectrometer in May 2018 [1]

● What is needed:

● Selection of well-diagnosed pulses for W modelling (eg. 94606)

● Identification of strong isolated W lines

● Absolute calibration for the line-integrated radiance

● ADF15 effective photon emissivity coefficients for each line,
ideally with benchmark experiments to evaluate accuracy if feasible
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[1] K.D. Lawson et al., Phys. Scr. (2022) 97 055605

K.D. Lawson et al., Phys. Scr. 2022

JPN 95012



Conclusions

● Simulation workflow including ERO2.0 and JINTRAC developed for more accurate predictions of 
W erosion and transport in the edge and core plasma

● Precise description of the plasma conditions is critical to W prediction accuracy

● Code-experiment agreement on W I emission at the outer target, but low-ionised W is challenging

● Predicted main plasma W density profiles in all studied scenarios reproduce the experiment within the 
modelling uncertainty (factor of 2-3)

● Currently looking for photon emissivities for W lines in the scrape-off layer to validate W ion transport
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[1] H. Kumpulainen et al., NME 25 100866 (2020)
[2] M. Sertoli et al., J. Plasma Phys. (2019) 85 90585050

          ERO2.0
               JINTRAC

 
 

Experiment [2]

In L-mode, high-fidelity W transport models are less important than in H-mode

● The measured W density in L-mode was previously reproduced 
by core-edge integrated JINTRAC without ERO2.0 [1]

 

→ The benefits of the presented modelling approach
   

  
are more evident in H-mode cases

● Code benchmark of ERO2.0 vs. EDGE2D-EIRENE: 
agreement on W density within a factor of 1.5 (L-mode)

W density, flux-surface averaged

JPN 81472 (L-mode)

separatrix
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  n
e
 (HRTS)

  – EDGE2D no-drift
 -

 
- EDGE2D drift

    
T

e
 (HRTS)

  – EDGE2D no-drift
 -

 
- EDGE2D drift

Validated inter-ELM H-mode plasmas were produced using EDGE2D-EIRENE 

with and without cross-field drifts and pinch velocity

● A pinch velocity (ad-hoc) is necessary with drifts 
to reproduce measured upstream and target profiles

n
e 
(LPs)

j
sat

 (LPs)

T
e 
(LPs)

JPN 94605 (P
aux

 = 18 MW)
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W density, ERO2.0

Drifts redistribute W near the separatrix, but minor impact <30% on core W density

Drifts on in BG plasmaDrifts off in BG plasma
● Both plasmas are fitted to upstream and 

target measurements

● The main benefit of drifts is a more 
realistic parallel-B flow profile in the SOL

● ELM phase with drifts not available
→steady inter-ELM phase shown
 

JPN 94605 (P
aux

 = 18 MW)
Inter-ELM phase

Henri Kumpulainen et al. | AMPMI 2024 | 18 July 2024 | Page 21



● Boundary condition: Flux-surface averaged W density 
at pedestal top (rho=0.9) from ERO2.0 predictions

● Neoclassical W core transport predicted using NEO

[1] M. Sertoli et al., J. Plasma Phys. (2019) 85 90585050

W density, flux-surface averaged

Experiment [1]

                    JINTRAC
                 ERO2.0

JPN 94605 (P
aux

 = 18 MW)

JINTRAC core transport simulations with the W boundary condition from ERO2.0

predict the core W density within a factor of 2

separatrix
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The predicted 2D W density profile is within a factor of 2 of the measured W density

W density, NEO

W density, ERO2.0, ELM-averaged

W density, experiment [1]

JPN 94605 (P
aux

 = 18 MW)

[1] M. Sertoli et al., J. Plasma Phys. (2019) 85 90585050
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Fast core transport codes used for BG modelling, first-principles for predicting W

● The following models from the JINTRAC suite of codes are applied in this work:

● Empirical Bohm/gyro-Bohm (BgB) [1] scaling for anomalous transport
● Fast and versatile way to obtain plasma profiles consistent with experiments
● Used for interpretive but self-consistent modelling of the BG plasma

● NCLASS [2] is a fast 1D neoclassical transport model
● Used in combination with BgB for BG plasma modelling

● QuaLiKiz [3] is a 3D quasilinear gyrokinetic code for turbulent transport
● First-principles alternative to BgB
● Faster approximate solutions available from a neural network [4] trained on a 

QuaLiKiz simulation database

● NEO [5] is a first-principles drift-kinetic neoclassical transport code
● Includes the strong impact of rotation on neoclassical convection
● Neoclassical convection in JET dominates high-Z core transport [6]

[1] M. Erba et al., PPCF 39 261 (1997)
[2] W.A. Houlberg et al., PoP 4 3230 (1997)
[3] C. Bourdelle et al. PoP 14 112501 (2007)
[4] A. Ho et al. PoP 28 032305 (2021)
[5] E.A. Belli et al., PPCF 50 095010 (2008)
[6] S. Breton et al., PoP 25 012303 (2018)

  +  T
i
 (CXRS)

  – JINTRAC

  +  n
e 
(HRTS)

  – JINTRAC

JPN 94605 (P
aux

 = 18 MW)
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W density is sensitive to gradients, ELM properties, and SOL conditions

● Core W density is very sensitive to the T
i
 and n

e 
gradients and the rotation frequency

→ W predictions are within the uncertainty induced by measurement accuracy

→ Fully predictive modelling of both the background and W a major challenge:
    

 
Assuming 15-20% uncertainty in the gradients, W uncertainty ~ factor of 5

● What are the most critical parameters affecting the uncertainty of W predictions?

– T
i
 and n

e
 radial gradients and rotation on closed flux surfaces

– ELM properties (heat and particle fluxes, duration, frequency)
– T

e
 and n

e
 profiles and plasma flow patterns in the SOL

– Flux and energy spectrum of atoms incident on non-plasma-wetted W surfaces
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W sources in the high-field side SOL are efficiently screened

0 1 2

3 4

JPN 81472 (L-mode)
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W sources in the PFR result in modest W influx; OT W sources are fully screened

5 6 7

8 9

JPN 81472 (L-mode)
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Tile 7 is well screened, but tiles 8 and B have very weak W screening (n
W,ped

 > 1015 m-3)

10 11 12

13 14

JPN 81472 (L-mode)
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ELM energy losses and heat loads on the divertor targets are fitted to measurements

JPN 94605 (P
aux

 = 18 MW)
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L-mode: EDGE2D and ERO2.0 match the observed W density in the main plasma

● It is known [1] that EDGE2D underestimates 
the W charge in the main chamber SOL due 
to the bundled fluid treatment of W ion states

● A correction factor of 1.5 can be applied to 
the EDGE2D main chamber W density to 
match fully charge-resolved predictions [1]

● Only minor differences between EDGE2D and 
ERO2.0 due to W erosion rate, rotation 
profile, fluid vs. kinetic transport etc.

[1] H. Kumpulainen et al., NME 25 100784 (2020)

Experiment – – 
JINTRAC based on EDGE2D (1.5x: – –)
EDGE2D-EIRENE (1.5x: – –)
ERO2.0  

Flux-surface averaged W density

Experiment: L-mode JPN 81472 at 9 s, msertoli/wsxp/hz01
JINTRAC run: hkumpul/jet/81472/may2120/seq#1
EDGE2D-EIRENE run: hkumpul/jet/81472/apr0120/seq#2
ERO2.0 run: hkumpulainen/run36/seq01
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W density, ERO2.0W density, JPN 81472 (9 s)

L-mode: ERO2.0 2D W main plasma density is consistent with experiment (factor of <2)
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Edge plasma profiles, #97781 at 8 s, P
aux

 = 35 MW
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Tile 0 is imperfectly screened in the C-C configuration, unlike V5/C

0 1 2

3 4
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W sources in the divertor corners are almost fully screened

5 6 7

8 9
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The upper part of tile 7 and 8, B, and C have weak W screening

10 11 12

13 14
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ELM phase W screening is weaker than intra-ELM on tile 7 but stronger on tile 8 (~2x)

10 11 12

13 14
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