The Decennial IAEA Technical Meeting on Atomic, Molecular and Plasma-Material Interaction Data for Fusion Science and Technology

Global 3D Modelling of Plasma-Wall Interaction in Fusion Devices Applications and Data Needs in View of ITER and DEMO

D. Matveev, J. Romazanov, C. Baumann, S. Brezinsek and EUROfusion TSVV-7 Team

18.07.2024 | Metsätalo, University of Helsinki, Finland

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Outline

- Plasma-wall interaction (PWI) in fusion devices
- ERO2.0 code for PWI modelling
- Input data needs for PWI modelling
- Plasma solutions for PWI modelling
- ERO2.0 validation & applications
- Integral approach to PWI in EU-DEMO
- Summary in view of W wall in ITER and DEMO

Plasma-wall interaction (PWI) in fusion devices

full-W machine (here ITER)

PWI-related issues

Erosion

- wall lifetime
- dust formation

Core impurity concentration

- fuel dilution
- radiative cooling

Implantation

- fuel retention
- material
 - degradation

Deposition / co-deposition

- fuel retention
- dust formation

Role of modelling

ERO2.0 code for PWI modelling

Plasma-material interaction + Impurity transport

- Reflection
- Physical sputtering
- Chemical erosion
- Deposition
- Material mixing
- Layer growth

- Lorentz force + drifts
- Ionization/Dissociation
- Recombination
- Friction (Fokker-Planck)
- Thermal force
- Cross-field diffusion

ERO2.0 – a 3D Monte-Carlo impurity tracing and plasma-surface interaction code

- Simulation volume up to full reactor-scale
- Optimized for high-performance computing (HPC)
- Realistic CAD 3D wall with high resolution incl. shaping
- Magnetic shadowing from field line tracing
- Full-orbit ion tracing + guiding center approximation
- Plasma sheath models (E field, ion impact energies and angles)
- Plasma-material data (SDTrimSP, Molecular Dynamics)
- Connection to atomic & molecular databases (e.g. ADAS)
- Material mixing model (homogeneous mixing)
- Local surface morphology evolution model
- Multi-stage approach to erosion/deposition in ports,
 - e.g. for diagnostic mirrors

Member of the Helmholtz Association

- JET-ILW
- ITER
- DEMO
- WEST
- EAST
- W7-X
- LHD
- DTT
- PSI-2
- GyM

ERO: A. Kirschner et al., NF 40 (2000) 989 ERO2.0: J. Romazanov et al., PS T170 (2017) 014018

Input data for PWI modelling

fundamental

+ magnetic equilibrium / shadowing + energy / angular resolved fluxes

ERO2.0 modelling for JET-ILW

Effective Be erosion yields

Good agreement of Be emission and effective erosion yields validates the models and data used

- Significant role of presence of D in Be surface
- Significant contribution of self-sputtering (high Z_{eff})
- Additional erosion mechanisms (CAPS, CXN)

ERO2.0 modelling for JET-ILW

Effective Be erosion yields

- Underlying modelling assumptions are possible reasons for discrepancies with experiment
- Parameter studies help identifying critical dependencies when models lack completeness

ERO2.0 modelling for JET-ILW

Validation of W erosion and transport simulations

- W density in main plasma within factor 2 of experimental for a wide range of plasma scenarios
- ERO2.0 predictions of W erosion consistent with measured W I spectral line emission, but more localized, potentially due to uncertainties of W atomic data (e.g. **metastable states**)
- Virtually perfect divertor screening observed prompt re-deposition, pre-sheath E field, main ion flow
- Influx into core mainly due to CXN erosion near LFS divertor entrance much lower screening efficiency
- Critical SOL parameters: n_{e} , T_{e} , ion flow, energy-resolved CXN fluxes
- Multi-fluid plasma solution (EDGE2D-EIRENE) affected

by W charge-state bundling

H. Kumpulainen et al., NME 33 (2022) 101264 H. Kumpulainen, PhD Thesis (2023) https://urn.fi/URN:ISBN:978-952-64-1257-3

ERO2.0 modelling: JET-ILW vs ITER

D. Matveev

ERO2.0 modelling: JET-ILW vs ITER

ERO2.0 modelling for ITER: Be vs W

ITER with Be: J. Romazanov et al., NF 62 (2022) 036011 ITER with W: A. Eksaeva et al., Phys. Scr. 97 (2022) 014001

11

pure D cases

- Factor ~10 lower total erosion
- Main chamber erosion mostly by CXN
- Redeposition mostly in main chamber
- Flat far-SOL (high T_a) \rightarrow fast W ionization
- No erosion by D in divertor (low T_{a})

with seeded impurities

- Simplified assumption: constant concentration, single charge state
- Impurity and self-sputtering important in the divertor

ERO2.0 modelling for ITER: Be vs W

ITER with Be: J. Romazanov et al., NF 62 (2022) 036011 ITER with W: A. Eksaeva et al., Phys. Scr. 97 (2022) 014001

Be ITER W ITER Full-WITFR: •

pure D cases

- Factor ~10 lower total erosion
- So far has been done as a first step for full-W DEMO simulations (before ITER re-baselining)
- Now being revisited, including effects of **boronisation** layer lifetime and re-deposition

No erosion by D in divertor (low T_a)

with seeded impurities

- Simplified assumption: constant ٠ concentration, single charge state
- Impurity and self-sputtering important in the divertor

Member of the Helmholtz Association

C. Baumann et al. EPS 2023, PSI 2024

D. Matveev IAEA AMPMI 2024

Large volume for extrapolation of plasma solution to the wall

Extrapolation introduces large modelling uncertainties

Following assumptions used so far:

- Exponential decay for densities
- Exponential decay for temperatures; but capped by 2 eV / 5 eV / 10 eV
- Uniform decay constant of 5 cm
- Constant Mach number
- Ion flow velocity from local Mach number and plasma parameters

C. Baumann et al. EPS 2023, PSI 2024

Charge-resolved spatially non-uniform impurity ion fluxes (He, Ar)

Essential for proper calculation of sputtering yields

Using the total flux with mean volumentric charge state leads to overestimation of gross erosion

Charged resolved spatially varying fluxes now implemented in ERO2.0 lead to significant reduction of divertor gross erosion by impurities

Remaining problem: impurity charge state distribution at the first wall is taken from outermost SOLPS nodes leads to overestimation of erosion

Charge-exchange fluxes and erosion in the main chamber

Standard SOLPS-ITER output: poloidal profiles and mean energies of neutral atoms at the wall

Simple approach to sputtering by CXN:

 Using the mean energy with the total flux may overestimate the flux and underestimate the erosion yield

Advanced appoach to sputtering by CXN:

• EIRENE post-processig of the SOLPS-ITER solution to provide energy resolved (and ideally angular resolved) neutral fluxes

Charge-exchange fluxes and erosion in the main chamber

 10^{-1} UXDO bwo lwo 10-2 normalized spectrum [1/eV] omp uxpo 10-3 omp 10^{-4} 10-5 lwo 10-6 bwo 101 10³ 10^{4} 10^{2} energy [eV]

EDFs – Energy Distribution Functions

Energy resolved spectra improve yield calculations

Available only for 12 poloidal locations (provided by S. Wiesen)

Interpolation is used by calculating effective erosion yield for each spectrum combined with poloidal flux profile Angular resolved spectra still pending

Example for the mean CXN energy approach

- Main chamber erosion dominated by neutrals
- Divertor erosion dominated by Ar and self-sputtering
- Strong transport from main chamber into the divertor due to long ionization mean free paths, no transport from divertor
- Main deposition locations:
 - inner and outer divertor above strike lines,
 - remote areas above outer divertor (wall gap),
 - top of the machine (upper X-point)

Member of the Helmholtz Association

C. Baumann et al. EPS 2023, PSI 2024

ÜLICH

Plasma-Wall Interaction in DEMO

Plasma-Wall Interaction in DEMO

Objectives

Assessment of steady-state W erosion rates for first wall and divertor

Mapping of preferential W re/co-deposition locations

Assessment of dust mobilization from likely dust production sites (dust survival rates and dust accumulation maps)

Assessment of PFC response to transients: melting and splashing (melt-stability, likelihood of splashing, droplet-to-dust conversion) Assessment of W erosion rates for locations affected by transients

Assessment of tritium in-vessel inventory & permeation rates

(co-deposition, bulk retention with He-induced and neutron damage)

Plasma-Wall Interaction in DEMO

Teams, codes and competences

9	FZJ	ERO2.0	Impurity transport and PWI: erosion-deposition mapping in steady- state
(KTH)	IPP Garching	SDTrimSP	PWI data: implantation, reflection, sputtering
		TESSIM, RAVETIME	Fuel retention / Uncertainty quantification
	KTH	MEMENTO	Material response to transient heat loads: melting and splashing
		MIGRAINE	Dust & droplet mobilization and transport
	IPP Prague	SPICE & BIT	Kinetic (PIC+MC) modelling of complex plasma sheath
JSI	JSI	BIT	Kinetic (PIC) modelling of dynamic SOL
Sorbonne Paris Nord	CEA/USPN	MHIMS, FESTIM	Fuel retention (incl. 3D monoblock geometry)
UNIVERSITY OF HELSING	VTT/Helsinki	MD, DFT, ML	Interatomic potentials development / MD modelling for PWI
		a set of dedicated and validated codes	

cei

PIC modelling (BIT1 code): high density divertor sheath (n_e up to 5.10²¹ m⁻³)

Collisional sheath with a zoo of multi-step A&M processes:

- ← Modification of ion and neutral distribution functions (energies and angles of wall impact)
- ← Angular distributions of ions acquire shape similar to neutrals
- \checkmark Parallel Mach number at sheath entrance is <1
- ∠ Boundary conditions of edge plasma simulations (e.g. SOLPS) use M_{||} = 1
- W prompt re-deposition decreases faster than gross sputter rate → increased net erosion rate
- Multi-step W ionization and W-D⁺ charge-exchange at high density increase re-deposition (not much) but such collision cross-sections are largely unknown

PWI data and new code capabilities

SDTrim-SP 1/2/3D

- "Gyro-motion" extension:
 - magnetic & electric field effects on impinging ions
 - e.g. for Y_{eff} of molten surface morphology
- "Crystal" extension:
 - More accurate description of polycrystalline surfaces

U. Von Toussaint

Sputtering data for D supersaturated W and W-O-D

• Ar case studies accomplished, D case in progress

F. Kporha, F. Granberg

Member of the Helmholtz Association

Summary of critical questions in view of ITER and DEMO

- PWI codes are capable of simulating full-W environments rely on plasma solutions and fundamental data
- Key points for more consistent plasma backgrounds (far-SOL)
 - Wide-grid plasma codes (SOLEDGE3X, EMC3-EIRENE, SOLPS-ITER); turbulent transport?
 - New workflows in EIRENE for CXN distributions high statistic requirement
 - Reducing uncertainties on SOL transport (ionization, recombination, diffusion, plasma flow)
 - Consequences of "diffusive" divertor sheath in view of edge coupling and impurity transport (edge code boundary conditions, prompt re-deposition, ion impact characteristics)
- Fundamental data needs
 - W atomic data recombination at low n_e , qualitative differences between different W charge states, density dependence of ionization rate coefficients, H⁺-W charge-exchange, multi-step ionization
 - Erosion yields for B and H/B layers (experiments), incl. low energies (Molecular Dynamics), B + O ?
 - Boron migration to shadowed areas, accumulation (in absence of B pumping) dust issue ?
 - Fuel retention in and removal from co-deposited layers (diffusion, trapping, isotope exchange)

W

В