Configuration-Average Collisional-Radiative calculations, Ionization and Emission of Iow-density tungsten plasmas in the temperature range [800-5000] eV

O. Peyrusse¹, R. Guirlet², C. Desgranges², Y. Boumedjel² and West Team²

¹Aix-Marseille Université, CNRS, Laboratoire LP3, UMR 7341, FRANCE, ²CEA, IRFM, F-13108 St Paul-lez-Durance, France

Radiative emission from more or less hot high-Z plasmas

Inertial Confinement Fusion (indirect drive) Gold (Z = 79) Hohlraums

Need to optimize the X-ray conversion efficiency (from laser-matter interaction)

Magnetic Confinement Fusion

Tungsten (Z = 74) inner-walls in tokamaks. **Sputtering** \Rightarrow **pollution** Need to minimize the X-ray emission in the core, to maximize in the edge (cooling)

Configuration-Average Collisional-Radiative calculations, Ionization

Atomic physics of more or less hot high-Z plasmas

Dense Plasmas

- Collisions may thermalize groups of levels ⇒ partial LTE within configs, SCs
- Excited levels significantly populated
- Highly excited levels not permitted due to lonization Potential Depression

Diluted Plasmas

- Most of ions reside in ground levels
- Highly excited levels are permitted
- Excited levels populated by collision from the ground state and radiative cascade following resonant capture

Modeling of the radiative emission (high-Z plasmas)

\Rightarrow The needs :

- Ionization Balance (or Charge State Distribution)
- Emissivity (if possible, consistent with the CSD, i.e. the same model) Radiation Power Losses

\Rightarrow The difficulties :

- Overwhelming number of levels
- Many overlapping spectral features
- *Completness* difficult to reach for Collisional-Radiative calculations

Present work

Calculations :

- Configuration average (CA) mode
- Unresolved Transition Arrays (UTA) and Spin-Orbit-Split Arrays (SOSA) formalism
- No adjustment to the recombination rates
- Full consistentcy between the CSD and the emissivity

Comparisons with some published EUV experimental spectra and some obtained on the WEST tokamak

Unresolved Transition Array : the strict definition

UTA : totality of lines between levels of 2 configurations

- May A

Defined by its

mean position μ₁
variance μ₂ - (μ₁)²

$$\mu_n = \sum_{a,b} (E_b - E_a)^n \frac{W_{ab}}{W}$$

 W_{ab} is the E1 strength

Compact formulae exist for μ_1 and μ_2 , this is the UTA theory

When **Spin-Orbit** interaction is important, a **UTA** may split into 2,3 structures : **SOSA**. Theory = 1000

Specificities of an Atomic model for tungsten in core tokamak conditions

For densities $N_e \sim 10^{13} \ {
m cm}^{-3}$ (core)

- Populations of excited configurations are weak (majority of ions resides in the ground state)
- A superconfiguration represents too large an energy range
- No more effective SC temperatures

For high-Z

- Multiply-excited states above thresholds form resonances for electron capture
- \Rightarrow A large set of **configurations** is necessary

List : promotional strategy adopted here Example of the ion W³⁴⁺ (Zr-like : 40 electrons)

 $\begin{array}{l} \textbf{S}_0: \text{one-electron excitation from the last occupied subshell} \\ \textbf{S}_1: \text{excitation of a second elec. from the last occupied subshell} \\ \textbf{S}_2: \text{excitation of one elec. from the second last occupied subshell} \\ \textbf{S}_3: \text{after } S_0, \text{excitation of one elec. from the second last occupied subshell} \\ \text{occupied subshell.} \end{array}$

promotional strategy adopted here for selecting configurations ...

 $\begin{array}{ccccccc} \textbf{4 steps} \text{ ; example of the } & \mathsf{Zr-like ion} & (40 \text{ electrons}) \\ \textbf{S0} : & \textbf{S2} : \\ (1)^2 & (2)^8 & (3)^{18} & 4s^2 & 4p^6 & 4d^4 & (1)^2 & (2)^8 & (3)^{18} & 4s^2 & 4p^5 & 4d^5 \\ (1)^2 & (2)^8 & (3)^{18} & 4s^2 & 4p^6 & 4d^3 & 4f & (1)^2 & (2)^8 & (3)^{18} & 4s^2 & 4p^5 & 4d^4 & 4f \\ (1)^2 & (2)^8 & (3)^{18} & 4s^2 & 4p^6 & 4d^3 & (5-10)^1 & (1)^2 & (2)^8 & (3)^{18} & 4s^2 & 4p^5 & 4d^4 & (5-10)^1 \\ \textbf{47 configurations} & \textbf{47 configurations} \end{array}$

\Rightarrow 2256 configurations in this ion stage

 \sim 40 000 rate equations (all populated ion stages)

Steady-state Collisional-Radiative Model

Configuration Average rate equation system

$$\sum_{z',c'} N_{c'}^{(z')} T(z',c' \to z,c) - \sum_{z',c'} N_{c}^{(z)} T(z,c \to z',c') = 0$$

$$T(z, c
ightarrow z', c') = \sum_{process} \sum_{i \in c} \sum_{j \in c'} rac{g_i}{g_c} T^{process}(z, i
ightarrow z', j)$$

 $\mathcal{T}^{\it process}(z,i
ightarrow z',j)$ is a configuration average rate

Processes included

- radiative deexcitation
- collisional excitation/deexcitation
- radiative recombination
- collisional ionization
- autoionization/resonant capture → (=> (=> (=>) (=>

Configuration-Average rates

Properly configuration averaged rates or cross sections contain an orbital dependent part and an occupation number dependent part

(Peyrusse, J. Phys. B (1999); Bauche & Peyrusse, Springer 2015)

- e.g. consider the collisional strength of the jump $\alpha \rightarrow \beta$ e.g. $1s \rightarrow 2p$ between $1s^22s^2$ and $1s2s^22p$ $\Omega_{C-C'}^{\alpha\beta} = n_{\alpha}(g_{\beta} - n_{\beta})\Omega^{\alpha\beta}$ here $n_{\alpha} = 2, n_{\beta} = 0$
 - The part (...) is factorized out
 - Methods used for calculating the radial part
 - **Distorted-Wave** for collisional excitation, ionization, autoionization
 - Dipolar approx. for radiative deexcitation

UTA/SOSA fomulas, CA rates,

Other characteristics ...

- Non-relativistic Atomic Structure, but relativistic corrections are included in the calculation of the radial orbitals (*cf* Cowan's book).
- Hartree-Fock-Slater calculations $v_x = -3\alpha(\frac{3}{8\pi}) \rho^{1/3}$ with $\alpha = 0.78$ • Emissivity consistent with the full s
- Emissivity consistent with the full set of populations {N_c^(z)}
- No adjustment to the recombination rates
- To summarize, the idea is here to
 - approach completness
 - build a proper broadband spectrum with many UTA/SOSA structures

Results of Collisional-Radiative Modeling

 \rightarrow Huge effect of Step 3 importance of configs. (3)¹⁸ (4)¹⁰ (7-10)² (i.e. Zr-like) same for other ions

⇒ Promotion of 2 elec. from 4p, 4d, 4f to all subshells with n=5-10 seems to play an important role.

Calculated spectra ; UTA/SOSA formalism $N_e = 5 \ 10^{13} \ cm^{-3}$

O. Peyrusse¹, R. Guirlet², C. Desgranges², Y. Boumedjel² and W

Configuration-Average Collisional-Radiative calculations, Ionization

Calculated spectra; UTA/SOSA formalism Comparison with LHD spectra, Liu *et al* JAP **122**, 23301 (2017)

Calculated spectra ; UTA/SOSA formalism

Comparison with LHD spectra, Murakami et al, NME 26, 100923, (2021)

O. Peyrusse¹, R. Guirlet², C. Desgranges², Y. Boumedjel² and W

Configuration-Average Collisional-Radiative calculations, Ionization

Calculations : QC (\sim 50 Å) disappears above 2 keV

Recent WEST experimental EUV spectra

 \Rightarrow Need to take the LOS for modeling

WEST experiments (an older campaign)

WEST experiments

O. Peyrusse¹, R. Guirlet², C. Desgranges², Y. Boumedjel² and V Configuration-Average Collisional-Radiative calculations, Ionizatio

・ 同 ト ・ ヨ ト ・ ヨ

Comparison modeling-experiments Quasi-Continuum (QC) region; Boumendjel *et al*, Phys. Plasmas **30**, (2023)

O. Peyrusse¹, R. Guirlet², C. Desgranges², Y. Boumedjel² and W

Configuration-Average Collisional-Radiative calculations, Ionization

Conclusion

- Importance of the configuration list
- No need to modify the recombination rates (*cf* OPEN-ADAS project 1995-2016; T. Pütterich *et al*, PPCF **50**, 085016 (2008))
- UTA/SOSA formalism allows to recover most of the QC emission
- Difficulty to reproduce individual line emission between simple configurations (e.g. 4d⁹ 4f - 4d¹⁰)
- More generally, difficulty to account for Δn = 0 (n=4) transitions, strongly affected by Cl
- **To be done** : an *hybrid* model mixing consistently fine-structure levels and configurations...

THANK YOU FOR YOUR ATTENTION !

