Divertor-safe Nonlinear Burn Control in Long-Pulse Reactor Operation: Integrating Edge Constraints by Reference Governor

Prof. Eugenio Schuster

Plasma Control Laboratory Mechanical Engineering & Mechanics Lehigh University (LU), Bethlehem, PA, USA

E-mail: *schuster@lehigh.edu*

With contributions of **Vincent Graber (LU)**

Presented at **IAEA TM on Long Pulse Operation of Fusion Devices**

October 14-18, 2024

Work supported by U.S. Department of Energy, Office of Science Office of Fusion Energy Sciences (DE-SC0010661), and carried out in part under the ITER Scientist Fellow Network program

Burn Control ≡ **Density and Temperature Control of All Species**

Regulation of fusion power in DT plasma ≡ **Control of density/temperature of all species**

E. Schuster (LU Plama Control Group) [Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) IAEA TM Long Pulse Operation - October 17, 2024 2/36

Burning Plasma Model (Controls): 0D Balance Equations

- Control goal is $0D \Rightarrow 0D$ response model is what is needed for control synthesis \bullet
	- $-$ Energy balance equations for ions and electrons ($E = E_i + E_e$ with $-\frac{E}{\tau_E} = -\frac{E_i}{\tau_{E_i}}$) $\frac{E_e}{\tau_{E_e}}$
- Control synthesis: 0D model \rightarrow Performance assessment (simulations): 1D model \bullet
	- Asses coupling with other space-dependent control goals such as profile control

10n Energy:
$$
\frac{dE_i}{dt} = -\frac{E_i}{\tau_{E_i}} + \phi_{\alpha} \overbrace{Q_{\alpha} S_{\alpha}}^{P_{\alpha}} + P_{ei} + P_{aux_i}^{others} + P_{aux_i}
$$
 ($E_i = \frac{3}{2} n_i T_i$)

\nElectron Energy:
$$
\frac{dE_e}{dt} = -\frac{E_e}{\tau_{E_e}} + \overline{\phi}_{\alpha} Q_{\alpha} S_{\alpha} - P_{ei} - P_{rad} + P_{Ohm} + P_{aux,e}^{others} + P_{aux,e}
$$
 ($E_e = \frac{3}{2} n_e T_e$)

\nAlpha particles:
$$
\frac{dn_{\alpha}}{dt} = -\frac{n_{\alpha}}{\tau_{\alpha}} + S_{\alpha}
$$

\nDeuterium:
$$
\frac{dn_D}{dt} = -\frac{n_D}{\tau_D} - S_{\alpha} + S_T^{rec} + S_T
$$

\nTritium:
$$
\frac{dn_T}{dt} = -\frac{n_T}{\tau_T} - S_{\alpha} + S_T^{rec} + S_T
$$

\nImpurities:
$$
\frac{dn_I}{dt} = -\frac{n_I}{\tau_I} + S_T^{sp} + S_I
$$
 (**actuators/disturbances in red/blue**)

\nQuasi-neutrality:
$$
n_e = n_D + n_T + 2n_{\alpha} + Z_I n_I
$$

\nDensity:
$$
n = \frac{n_{\alpha} + n_D + n_T + n_I}{n_e + n_P + n_T + n_I} + n_e = 2n_D + 2n_T + 3n_{\alpha} + (Z_I + 1) n_I
$$

10n Energy:
$$
\frac{dE_i}{dt} = -\frac{E_i}{\tau_{E_i}} + \phi_{\alpha} \overbrace{Q_{\alpha} S_{\alpha}}^{P_{\alpha}} + P_{ei} + P_{aux_i}^{others} + P_{aux_i}
$$
 $(E_i = \frac{3}{2} n_i T_i)$

\nElectron Energy:
$$
\frac{dE_e}{dt} = -\frac{E_e}{\tau_{E_e}} + \overline{\phi}_{\alpha} Q_{\alpha} S_{\alpha} - P_{ei} - P_{rad} + P_{Ohm} + P_{aux,e}^{others} + P_{aux,e}
$$
 $(E_e = \frac{3}{2} n_e T_e)$

\nAlpha particles:
$$
\frac{dn_{\alpha}}{dt} = -\frac{n_{\alpha}}{\tau_{\alpha}} + S_{\alpha}
$$

\nDeuterium:
$$
\frac{dn_D}{dt} = -\frac{n_D}{\tau_D} - S_{\alpha} + S_T^{rec} + S_T
$$

\nTritium:
$$
\frac{dn_T}{dt} = -\frac{n_T}{\tau_T} - S_{\alpha} + S_T^{rec} + S_T
$$
 (actualors/disturbances in red/blue)

Paux_{i,e}, *Sothers* represent effect of actuators (NBI, RF H&CD) under other competing controllers. *Paux*, *SD*, *S^T* , *S^I* are actuators available for burn control.

10n Energy:
$$
\frac{dE_i}{dt} = -\frac{E_i}{\tau_{E_i}} + \phi_{\alpha} \overbrace{Q_{\alpha} S_{\alpha}}^{P_{\alpha}} + P_{ei} + P_{aux_i}^{others} + P_{aux_i}
$$
 ($E_i = \frac{3}{2} n_i T_i$)

\nElectron Energy:
$$
\frac{dE_e}{dt} = -\frac{E_e}{\tau_{E_e}} + \overline{\phi}_{\alpha} Q_{\alpha} S_{\alpha} - P_{ei} - P_{rad} + P_{Ohm} + P_{aux,e}^{others} + P_{aux,e}
$$
 ($E_e = \frac{3}{2} n_e T_e$)

\nAlpha particles:
$$
\frac{dn_{\alpha}}{dt} = -\frac{n_{\alpha}}{\tau_{\alpha}} + S_{\alpha}
$$

\nDeuterium:
$$
\frac{dn_D}{dt} = -\frac{n_D}{\tau_D} - S_{\alpha} + S_T^{rec} + S_T
$$

\nTritium:
$$
\frac{dn_T}{dt} = -\frac{n_T}{\tau_T} - S_{\alpha} + S_T^{rec} + S_T
$$
 (**actuators/disturbances in red/blue**)

Reaction rate: $S_\alpha = n_D n_T \langle \sigma \nu \rangle \to S_\alpha = \gamma (1-\gamma) n_{DT}^2 \langle \sigma \nu \rangle$. Tritium fraction: $\gamma \triangleq n_T/n_{DT}$, $n_{DT} = n_T + n_D$.

• The DT reactivity $\langle \sigma \nu \rangle$ is a highly nonlinear function of the plasma temperature. $Q_{\alpha} = 3.52 MeV$.

Fraction ϕ_α of P_α going to ions is highly nonlinear function of plasma state $(\bar{\phi}_\alpha=1-\phi_\alpha).$

10n Energy:
$$
\frac{dE_i}{dt} = -\frac{E_i}{\tau_{E_i}} + \phi_{\alpha} \overbrace{Q_{\alpha} S_{\alpha}}^{P_{\alpha}} + P_{ei} + P_{aux_i}^{others} + P_{aux_i}
$$
 ($E_i = \frac{3}{2} n_i T_i$)

\nElectron Energy:
$$
\frac{dE_e}{dt} = -\frac{E_e}{\tau_{E_e}} + \overline{\phi}_{\alpha} Q_{\alpha} S_{\alpha} - P_{ei} - P_{rad} + P_{Ohm} + P_{aux,e}^{others} + P_{aux,e}
$$
 ($E_e = \frac{3}{2} n_e T_e$)

\nAlpha particles:
$$
\frac{dn_{\alpha}}{dt} = -\frac{n_{\alpha}}{\tau_{\alpha}} + S_{\alpha}
$$

\nDeuterium:
$$
\frac{dn_D}{dt} = -\frac{n_D}{\tau_D} - S_{\alpha} + S_T^{rec} + S_T
$$

\nTritium:
$$
\frac{dn_T}{dt} = -\frac{n_T}{\tau_T} - S_{\alpha} + S_T^{rec} + S_T
$$
 (**actuators/disturbances in red/blue**)

- Confinement scaling (IPB98(y,2)): $\tau_E = 0.0562 H_H (I_{\text{coils}}^{\text{non-axi}}) I_p^{0.93} B_T^{0.15} P^{-0.69} n_{e19}^{0.41} M^{0.19} R^{1.97} \epsilon^{0.58} \kappa_{95}^{0.78}$.
- Particle confinement assumed proportional to τ_E , i.e. $\tau_\alpha = k_\alpha \tau_E$, $\tau_D = k_D \tau_E$, $\tau_T = k_T \tau_E$, $\tau_I = k_I \tau_E$. \bullet
- **Ion/Electron energy confinement assumed proportional to** τ_E **, i.e.** $\tau_E = \zeta_i \tau_E$ **,** $\tau_E = \zeta_e \tau_E$ **.**

10n Energy:
$$
\frac{dE_i}{dt} = -\frac{E_i}{\tau_{E_i}} + \phi_{\alpha} \overbrace{Q_{\alpha} S_{\alpha}}^{P_{\alpha}} + P_{ei} + P_{aux_i}^{others} + P_{aux_i}
$$
 $(E_i = \frac{3}{2} n_i T_i)$

\nElectron Energy:
$$
\frac{dE_e}{dt} = -\frac{E_e}{\tau_{E_e}} + \bar{\phi}_{\alpha} Q_{\alpha} S_{\alpha} - P_{ei} - P_{rad} + P_{Ohm} + P_{aux,e}^{others} + P_{aux,e}
$$
 $(E_e = \frac{3}{2} n_e T_e)$

\nAlpha particles:
$$
\frac{dn_{\alpha}}{dt} = -\frac{n_{\alpha}}{\tau_{\alpha}} + S_{\alpha}
$$

\nDeuterium:
$$
\frac{dn_D}{dt} = -\frac{n_D}{\tau_D} - S_{\alpha} + S_T^{rec} + S_D^{others} + S_D
$$

\nTritium:
$$
\frac{dn_T}{dt} = -\frac{n_T}{\tau_T} - S_{\alpha} + S_T^{rec} + S_T
$$
 (actuators/disturbances in red/blue)

\nompurity sputtering source:
$$
S_I^{sp} = f_I^{sp} \left(\frac{n}{\tau_I} + \hat{n}\right) \quad (0 \leq f_I^{sp} << 1) \Rightarrow n_I^{sp} = f_I^{sp} \quad (n_I = n_I^{inj} + n_I^{sp}).
$$

Fuel recycling is included in the model through nonlinear functions S_D^{rec} and S_T^{rec} of the states.

Prad, *POhm*, *Pei* are also highly nonlinear functions of the states (and magnetic properities like *I*).

$$
S_{D}^{R} = \frac{f_{\text{eff}}}{1 - f_{\text{ref}} \left(1 - f_{\text{eff}}\right)} \left\{ f_{\text{ref}} \frac{n_{D}}{\tau_{D}} + \left(1 - \gamma^{PFC}\right) \times \left[\frac{\left(1 - f_{\text{ref}} \left(1 - f_{\text{eff}}\right)\right) R^{\text{eff}}}{1 - R^{\text{eff}} \left(1 - f_{\text{eff}}\right)} - f_{\text{ref}} \right] \left(\frac{n_{D}}{\tau_{D}} + \frac{n_{T}}{\tau_{T}} \right) \right\}
$$
\n
$$
S_{T}^{R} = \frac{f_{\text{eff}}}{1 - f_{\text{ref}} \left(1 - f_{\text{eff}}\right)} \left\{ f_{\text{ref}} \frac{n_{T}}{\tau_{T}} + \gamma^{PFC} \times \left[\frac{\left(1 - f_{\text{ref}} \left(1 - f_{\text{eff}}\right)\right) R^{\text{eff}}}{1 - R^{\text{eff}} \left(1 - f_{\text{eff}}\right)} - f_{\text{ref}} \right] \left(\frac{n_{D}}{\tau_{D}} + \frac{n_{T}}{\tau_{T}} \right) \right\}
$$
\n
$$
= \frac{\left\{ f_{\text{ref}} \left(1 - f_{\text{eff}}\right) \right\} \left\{ f_{\text{ref}} \frac{n_{T}}{\tau_{T}} + \gamma^{PFC} \times \left[\frac{\left(1 - f_{\text{ref}} \left(1 - f_{\text{eff}}\right)\right) R^{\text{eff}}}{1 - R^{\text{eff}} \left(1 - f_{\text{eff}}\right)} - f_{\text{ref}} \right] \left(\frac{n_{D}}{\tau_{D}} + \frac{n_{T}}{\tau_{T}} \right) \right\}} \right\}
$$
\n
$$
= \frac{\left\{ f_{\text{reflected}} \right\} \left\{ f_{\text{reflected}} \frac{n_{D}}{\tau_{\text{particle}} \tau_{\text{other}} \tau_{\text{other}} \right\}}{M}
$$
\n
$$
= \frac{\left\{ f_{\text{reflected}} \right\} \left\{ f_{\text{reflected}} \frac{n_{D}}{\tau_{\text{particle}} \tau_{\text{other}} \tau_{\text{other}} \right\}}{1 - R^{\text{eff}} \left\{ f_{\text{reflected}} \frac{n_{D}}{\tau_{\text{system}}} -
$$

†Ehrenberg J. 1996 Physical Processes of the Interaction of Fusion Plasmas with Solids (New York: Academic) [1] M.D. Boyer and E. Schuster, Nuclear Fusion 55 (2015) 083021 (24pp).

Burn Control Challenges: Nonlinearity Lead to Multiple Equilibria

• Fusion power is highly nonlinear function of plasma state

 $P_f = n_D n_T \langle \sigma \nu \rangle Q_{DT} = \gamma (1 - \gamma) n_{DT}^2 \langle \sigma \nu \rangle Q_{DT}$

where $n_{DT} \triangleq n_T + n_D$ and $\gamma \triangleq n_T/n_{DT}$.

- The function $\gamma(1-\gamma)$ achieves its maximum of 0.25 at $\gamma = 0.5$ and decreases steeply for smaller/larger γ 's
- The reactivity $\langle \sigma \nu \rangle$ is a highly nonlinear function of ion temperature (steep derivative in low-temperature region)

\bullet How can we regulate the fusion power P_f ?

- $-$ Fuel density $n_{DT} \rightarrow$ Fueling
- $-$ Tritium fraction $\gamma \rightarrow$ Isotopic fuel tailoring
- − Reactivity $\langle \sigma \nu \rangle \rightarrow$ Heating (ion)

Key observation: Multiple Solutions!

- − Several operating points (plasma states) with the same *P^f*
- $-$ Full density/temperature control \rightarrow Desired operating point

 $10²$

 $D-T$ $D - D$ $D-He³$

 $10³$

0 0.2 0.4 0.6 0.8 1

temperature [keV]

 10^{1}

 $\mathbf 0$

 $10⁰$

0.05 0.1 0.15 0.2 0.25

[m³/sec] 10^{-21} $\left|10^{22}\right|$ 10^{-23} $\widehat{\widetilde{\mathcal{G}}}$ 10 24

 $\begin{array}{r} \n\sum_{i=1}^{10^{-25}} 10^{-25} \\
\sum_{i=1}^{10^{-26}} 10^{-27} \\
0 \\
0 \\
0 \\
1\n\end{array}$

 10

م
ح ا

Burn Control Challenges: Stability Is a Property of Equilibrium

The DT reactivity introduces a *positive-feedback mechanism* in the low-temperature region

- Potential for **thermal instability of operating equilibrium** → **excursions and quenching** \bullet
	- − Left fig.: Thermal excursion from perturbed unstable equilibrium to stable equilibrium (same inputs)
- Active burn control could enable operation at (higher-performance) unstable operating points
	- Scenario development work for burning plasmas should be carried out with active burn controller
- Operation at stable equilibria still needs active control (transient performance, disturbance rejection)

Burn Control Synthesis: Needs, Constraints, Approaches

- **Nonlinearity, dimensionality, actuator sharing, control-goal coupling**→**Model-based Control**
- **Modeling Challenges:** Limited eliability & readiness of predictive models for burning plasmas
	- − Transport (1D) models (control simulations) are still under development (particle transport is complex)
	- − Volume-averaged (0D) balance models (control synthesis) include uncertain parameters
- **Integration Challenges:** Coupling though confinement/actuator-sharing with other control goals
	- − Equilibrium (shape, current), ELM control, RWM/NTM stabilization, profile control

Controllability Challenges:

- $-Q$ ↑⇔ P_{α} >> P_{α} **control by heating may not be effective**
- − **Wall recycling: control by (isotopic) fueling may not be effective**

Observability Challenges:

− **Limited and noisy set of diagnostics**

Long-pulse Operation Challenges:

- − Wall heat/particle load tolerance may impose constraints on core burn regulation
- − Burn controller should be able to change operating conditions to assist divertor/wall protection
- − Effort on core/edge-compatible scenario development → Effort on integrated core-edge control

Burn Control Solution: Overview of Proposed Approach

1. **An Actuator/diagnostic-agnostic Nonlinear Burn Controller**

− Embeds knowledge (model) of coupled nonlinear dynamics and multiple input/output configuration

2. **A State Observer for Output-feedback Control**

- − Estimates non-measurable components of plasma state from a limited set of noisy diagnostics
- 3. **State Observer for Adaptive Feedback Control**
	- − Learns uncertain model (plasma confinement, wall recycling) parameters in real time
- 4. **Optimal Actuator Allocator**
	- − Converts virtual → physical actuation requests incorporating actuator constraints/dynamics

5. **Reference Governor with Divertor Safeguards**

- − Determines the controller's references in order to achieve operator-defined performance metrics
- − Incorporates divertor safeguards as optimization constraints to prevent divertor damage

Burn Control Solution: Overview of Proposed Approach

E. Schuster (LU Plama Control Group) **[Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) IAEA TM Long Pulse Operation - October 17, 2024** 9/36

Burn Control Solution: Controller

Nonlinear Feedback Control: Summary of Synthesis Technique

D Choose operating **equilibrium point**: \bar{E}_i , \bar{E}_e , \bar{n}_α , \bar{n}_D , \bar{n}_T , $\bar{n}_I\equiv 0$ given by \bar{P}_{aux_i} , \bar{P}_{aux_i} , \bar{S}_D , \bar{S}_T , $\bar{S}_I\equiv 0$ ² Write **dynamics of deviations** of states from desired operating point:

 $\tilde{E}_i \triangleq E_i - \bar{E}_i, \tilde{E}_e \triangleq E_e - \bar{E}_e, \tilde{n}_\alpha \triangleq n_\alpha - \bar{n}_\alpha, \tilde{n}_D \triangleq n_D - \bar{n}_D, \tilde{n}_T \triangleq n_T - \bar{n}_T, \tilde{n}_I \triangleq n_I$

Defining $x \triangleq [E_i \quad \tilde{E}_e \quad \tilde{n}_\alpha \quad \tilde{n}_D \quad \tilde{n}_T \quad \tilde{n}_I]$ and $u \triangleq [E_i \quad \tilde{P}_{aux_i} \quad \tilde{P}_{aux_e} \quad \tilde{S}_D \quad \tilde{S}_T \quad \tilde{S}_I]$, the burning-plasma model can be written as $\dot{x} = f(x, u)$ with $f(0, 0) = 0$

⁴ **Control Design Challenge:**

- Choose a **Lyapunov function candidate** $V(x)$, where $V(0) = 0$ and $V(x) > 0$ for all $x \neq 0$
- Choose a **feedback control law** $\alpha(x)$ with $\alpha(0) = 0$ s.t. $\dot{x} = f(x, \alpha(x)) \triangleq f^*(x)$ with $f^*(0) = 0$ and

$$
\dot{V}(x) = \frac{\partial V}{\partial x}\dot{x} = \frac{\partial V}{\partial x}f^*(x) < 0 \text{ for all } x \neq 0
$$

Actuator laws ($u = \alpha(x)$) are chosen to cancel nonlinear and possibly destabilizing terms, and to adjust response time, robustness to uncertainties, and sensitivity to noise.

• This technique **avoids linearization** around a particular operating point, which satisfies goals:

- ✓ **Regulation around a desired burning equilibrium point**
- $\sqrt{ }$ Drive plasma from one operating point to another (Modify Q or P_f)
- ✓ **Access to and exit from the burning plasma mode**

Nonlinear Feedback Control: Lyapunov Theory in a Nutshell

If the derivative $\frac{dV}{dt} = \frac{\partial V}{\partial x} f^*(x) = \frac{\partial V}{\partial x} f(x, \alpha(x))$ along a phase trajectory is everywhere negative, then the trajectory *x* tends to $V \equiv 0$ and therefore to the origin, i.e. the system is asymptotically stable

 $\dot{V}\equiv \frac{dV}{dt}$ is negative as long as angle ϕ between grad $V\equiv \frac{\partial V}{\partial x}$ and $\dot{x}\equiv \frac{dx}{dt}=f^*(x)$ is higher than 90°

[1] M.D. Boyer and E. Schuster, Nuclear Fusion 55 (2015) 083021 (24pp).

[2] A. Pajares, E. Schuster, Nuclear Fusion 59 (2019) 096023 (18pp).

[3] V. Graber and E. Schuster, Nuclear Fusion 62 (2022) 026016 (18pp).

Burn Control Solution: State Observer

E. Schuster (LU Plama Control Group) [Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) **IAEA TM Long Pulse Operation - October 17**, 2024 13/36

Burn Control Solution: State Observer

We define an observer as $(T_i = T_e \csc \theta)$

- We consider a general nonlinear output map $y=h(E,n_{\alpha},n_{I},n_{D},n_{T})$
- **•** The system is augmented with an additional state, \check{z} , governed by $\dot{\check{z}} = \mathring{y} y = \check{y}$
- **•** Lyapunov analysis \rightarrow injection terms L_F , L_{α} , L_D , L_T , L_I adopt a proportional-integral form

[1] M. D. Boyer, E. Schuster, International Federation of Automatic Control World Congress (2014).

Burn Control Solution: Parameter Estimator

E. Schuster (LU Plama Control Group) [Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) **IAEA TM Long Pulse Operation - October 17**, 2024 15/36

Burn Control Solution: Parameter Estimator

We define a system observer as $(T_i = T_e \csc)$

$$
\dot{E}^{ob} = -\hat{\theta}_1 \frac{E}{\tau_E} + P_{\alpha} - P_{rad} + P_{aux} + P_{Ohm} - K_E^{ob} (E^{ob} - E)
$$

\n
$$
\dot{n}_{\alpha}^{ob} = -\hat{\theta}_2 \frac{n_{\alpha}}{\tau_E} + S_{\alpha} - K_{\alpha}^{ob} (n_{\alpha}^{ob} - n_{\alpha})
$$

\n
$$
\dot{n}_{D}^{ob} = -\hat{\theta}_3 \frac{n_{D}}{\tau_E} + \hat{\theta}_4 \frac{n_{T}}{\tau_E} - S_{\alpha} + S_{D} - K_D^{ob} (n_{D}^{ob} - n_{D})
$$

\n
$$
\dot{n}_{T}^{ob} = \hat{\theta}_5 \frac{n_{D}}{\tau_E} - \hat{\theta}_6 \frac{n_{T}}{\tau_E} - S_{\alpha} + S_{T} - K_T^{ob} (n_{T}^{ob} - n_{T})
$$

\n
$$
\dot{n}_{T}^{ob} = -\hat{\theta}_7 \frac{n_{I}}{\tau_E} + S_{I} + S_{I}^{sp} - K_{I}^{ob} (n_{I}^{ob} - n_{I})
$$

The dynamics of the error $\tilde{\theta} = \theta - \hat{\theta}$ can be asymptotically stabilized by taking

$$
\dot{\hat{\theta}} = -\frac{1}{\tau_E} \Gamma \left[\begin{array}{cc} \tilde{n}_{\alpha}^{ob} n_{\alpha} & \tilde{E}^{ob} E & \tilde{n}_D^{ob} n_D & -\tilde{n}_D^{ob} n_T & -\tilde{n}_T^{ob} n_D & \tilde{n}_T^{ob} n_T & \tilde{n}_I^{ob} n_I \end{array} \right]^T, \Gamma > 0
$$

where

$$
\tilde{n}_{\alpha}^{ob} = n_{\alpha}^{ob} - n_{\alpha}, \tilde{E}^{ob} = E^{ob} - E, \tilde{n}_{I}^{ob} = n_{I}^{ob} - n_{I}, \tilde{n}_{D}^{ob} = n_{D}^{ob} - n_{D}, \tilde{n}_{T}^{ob} = n_{T}^{ob} - n_{T}.
$$

[1] M.D. Boyer and E. Schuster, Plasma Physics and Controlled Fusion 56 104004 (2014).

Burn Control Solution: Actuator Allocator

E. Schuster (LU Plama Control Group) [Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) **IAEA TM Long Pulse Operation - October 17**, 2024 17/36

Burn Control Solution: Actuator Allocator

- Virtual control inputs \leftrightarrow Effector System \leftrightarrow Physical control inputs
- Optimally handle competition by multiple actuators for available actuation \bullet

[1] V. Graber and E. Schuster, Nuclear Fusion 62 (2022) 026016 (18pp).

Burn Control Solution: Actuator Allocator

The Effector System maps the control efforts *v* to the actuator efforts *u*: $v\!=\![P_{aux,i}\,P_{aux,e}\,S_D\,S_T]^T\,\,\longleftrightarrow\,\,\,u\!=\![P_{ic}\,P_{ec}\,P_{nbi_1}\,P_{nbi_2}\,S_{D_{pel}}\,S_{D T_{pel}}\,S_{D T_{gas}}]^T$

$$
P_{aux,i} = \eta_{ic} P_{ic} + \eta_{nbi_1} \phi_{nbi} P_{nbi_1} + \eta_{nbi_2} \phi_{nbi} P_{nbi_2}
$$
\n
$$
P_{aux,e} = \eta_{ec} P_{ec} + \eta_{nbi_1} \bar{\phi}_{nbi} P_{nbi_1} + \eta_{nbi_2} \bar{\phi}_{nbi} P_{nbi_2}
$$
\n
$$
S_D = \eta_{nbi_1} \frac{P_{nbi_1}}{\varepsilon_{nbi_0}} + \eta_{nbi_2} \frac{P_{nbi_2}}{\varepsilon_{nbi_0}} + \eta_{pel_1} S_{D_{pel}} + \eta_{pel_2} (1 - \gamma_{pel}) S_{DT_{pel}} + \eta_{gas} (1 - \gamma_{gas}) S_{DT_{gas}}
$$
\n
$$
S_T = \eta_{pel_2} \gamma_{pel} S_{DT_{pel}} + \eta_{gas} \gamma_{gas} S_{DT_{gas}}
$$
\n
$$
\boxed{\text{Uncertain}
$$
 parameters

- lon cyclotron, electron cyclotron & NBI heating: P_{ic} , P_{ec} , P_{nbi_1} , P_{nbi_2}
- DT pellet & gas injection with Tritium fractions γ_{pel} & γ_{gas} : $S_{D_{pol}}$, $S_{DT_{opt}}$, $S_{DT_{opt}}$
- Efficiency factors: $η_{ic}, η_{ec}, η_{nbi₁}, η_{nbi₂}, η_{pel₁}, η_{pel₂}, η_{gas}$
- Pellet fueling efficiency decreases with increasing plasma energy: η*pelⁱ* = ρ*pelⁱ* (1−*E*/*E*0), *i* ∈ {1, 2}
- The NBI ion-heating fraction $\phi_{nbi} = \rho_{nbi} \phi_{nbi}^*$ contains uncertainty (ρ_{nbi}) .
- NBI thermalization delay contains uncertainty: ρ*th*

$$
\tau_{nbi}^{lag} = \rho_{th} \tau_{nbi}^{\star} = -\rho_{th} \frac{2}{3B} \ln \left[\frac{(\frac{\varepsilon_{nbi_{th}}}{\varepsilon_{nbi_{0}}})^{3/2} + (\frac{\varepsilon_{c}}{\varepsilon_{nbi_{0}}})^{3/2}}{1 + (\frac{\varepsilon_{c}}{\varepsilon_{nbi_{0}}})^{3/2}} \right] \qquad (\varepsilon_{nbi_{th}} = T_{i})
$$

Burn Control Solution: Real-time Optimal Reference Governor

E. Schuster (LU Plama Control Group) **[Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) IAEA TM Long Pulse Operation - October 17, 2024** 20/36

Burn Control Solution: Real-time Optimal Reference Governor

[1] M.D. Boyer and E. Schuster, Plasma Physics and Controlled Fusion 56 104004 (2014).

Real-time Optimal Reference Governor Without Divertor Constraint

[Scenario 1]: The controller drives the states *Ei*, *Ee*, γ, *n* (blue-solid lines) to their reference values (dashed-red lines), which are updated over time by the reference governor, by commanding the external heating $P_{\text{aux},i}$, $P_{\text{aux},e}$ and fueling rates S_D , S_T to be provided by the actuators.

Real-time Optimal Reference Governor Without Divertor Constraint

[Scenario 1]: Reference governor successfully drives electron density *ne*, electron temperature *Te*, and fusion power *P^f* (blue-solid lines) to target values (magenta-dotted lines) by updating references sent to controller for states *Ei*, *Ee*, γ, *n* (shown in previous figure). Because the reference optimization was unconstrained in this simulation, the peak heat load on the divertor targets exceeds safety limit.

Burn Control Solution: Real-time Optimal Reference Governor

E. Schuster (LU Plama Control Group) **[Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) IAEA TM Long Pulse Operation - October 17, 2024** 24/36

Burn Control Solution: Real-time Optimal Reference Governor

E. Schuster (LU Plama Control Group) **[Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) IAEA TM Long Pulse Operation - October 17, 2024** 24/36

Plasma Modeling for Divertor-Safe Burn Control in ITER

- Core and edge coupling \rightarrow Integrated burn and divertor control more challenging: \bullet
	- − Increased fusion power → Increased power flowing across separatrix into SOL and onto divertor
	- − High target heat loads (*qpk* >10 MW/m²) can cause catastrophic melting
- Divertor-safe burn controller: Control-oriented core-plasma + SOL/divertor models
	- − Two considered SOL/Divertor models: Two-point model† and SOLPS-ITER parameterizations‡
	- The optimization by the reference governor is constrained by safety limits for the divertor
- **Results from SOLPS-ITER simulations have been parameterized**
	- − Simulations: High-power DT operation with full-tungsten divertor and impurity seeding (neon/nitrogen)

† P.C. Stangeby, "The Plasma Boundary of Magnetic Fusion Devices," IoP Publishing, 2000. ‡H.D. Pacher *et al.*, Impurity seeding in ITER DT plasmas in a carbon-free environment, J. Nucl. Mater. 463 (2015).

Two-Point Model: Coupled Core-Edge Burning Plasma Model

[1] V. Graber and E. Schuster, Fusion Engineering and Design 171 (2021) 112516.

Two-Point Model: Straightening Out the SOL Plasma

- Relates upstream (separatrix) and downstream (target) conditions
- **Upstream**: density n_u , temperature T_u , parallel power flux density q_{\parallel} \bullet
- \bullet **Downstream**: density *n^t* , temperature *T^t*

Two Point Model Equations:

$$
2n_{t}T_{t} = f_{mom}n_{u}T_{u}, \qquad T_{u}^{\frac{7}{2}} = T_{t}^{\frac{7}{2}} + \frac{7}{2}\frac{f_{cond}q_{\parallel}L}{\kappa_{0}}, \qquad (1 - f_{pow})q_{\parallel} = \gamma_{s}n_{t}T_{t}c_{st}
$$

The Two-Point Model can be solved in terms of the **electron density** and **power entering the SOL** which are controllable with core-plasma actuators (pellet injection and auxiliary power).

E. Schuster (LU Plama Control Group) [Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) IAEA TM Long Pulse Operation - October 17, 2024 27/36

SOLPS-ITER Scalings: Coupled Core-Edge Burning Plasma Model

- The SOLPS parameterizations yielded scalings for:
	- − the divertor target heat load (*qpk*)
	- − the ion and electron separatrix temperatures (*Tⁱ^s* and *T^e^s*)
	- − the particle influxes into the core-plasma region (Γ*DT^s* and Γ^α*^s*)
- These scalings were coupled with a control-oriented core-plasma model.
- **Actuators:** Auxiliary Heating, Pellet Injection, Gas Puffing, Pumping \bullet
- **Divertor Constraint:** Heat Load q_{pk} < 10 MW/m²

[1] V. Graber and E. Schuster, 29th IAEA Fusion Energy Conference, London, UK, October 16-21 2023.

SOLPS-ITER Scalings: Peak Power Load on Target

- The SOLPS-ITER scalings depend on the following:
	- The power flowing into the SOL: $\bar{P}_{SOL} = P_{SOL}$ [MW]/100
	- $-$ The DT flux into the SOL [Pa m 3 /s]: $\Gamma_{DT_{SOL}} = \Gamma_{DT_{core}} + \Gamma_{DT_{pup}}$
		- + The controlled gas puffing rate: Γ*DTpuf*
		- $+$ DT core outflow $\Gamma_{DT_{core}} = \left(\frac{n_D}{\tau_D} + \frac{n_T}{\tau_T}\right) \times V$
	- $−$ The engineering pumping speed: $\bar{S}_{eng} = S_{eng}$ [m³/s]/57
		- $+$ $\,$ 65 m 3 /s \leq S_{eng} \leq 107 m 3 /s $\,$ $\,$ slow response time: 0 to 100% in 10 s †
	- − Separatrix impurity concentration: $\bar{c}_{Z_{\text{sep}}} = c_{Z_{\text{sep}}}/0.004$ for $Z \in \{Ne, N\}$
- Parameter μ is the neutral pressure normalized to one at full detachment:

$$
\mu = \left(\frac{\Gamma_{DT_{SOL}}}{250\bar{S}_{eng}}\right)^{0.83} \bar{P}_{SOL}^{-0.52} \qquad (\mu \leq 1 \to \text{detached})
$$

Peak power load on the target $[MW/m^2]$:

$$
\begin{bmatrix} q_{pk}|^{\text{Ne}} \\ q_{pk}|^{\text{N}} \end{bmatrix} = \text{ max} \Bigg(\begin{bmatrix} 4.01 \\ 3.45 \end{bmatrix} \bar{P}_{SOL}^{1.44} \ \mu^{-0.83}, \quad 5.819 \bar{P}_{SOL}^{1.12} \ \mu^{-0.32} \begin{bmatrix} \bar{c}_{\text{Ne}ep}^{-0.29} \\ \bar{c}_{\text{N}_{sep}}^{-0.19} \end{bmatrix} \Bigg)
$$

† J.A. Snipes *et al.*, Actuator and diagnostic requirements of the ITER Plasma Control System, Fusion Engineering and Design 87 (2012).

SOLPS-ITER Scalings: Separatrix Temperatures and Fluxes

• The electron and ion temperatures at the separatrix [eV]:

$$
\begin{split} \begin{bmatrix} T_{e_{s}}|\mathbf{N}\mathbf{e} \\ T_{e_{s}}|\mathbf{N} \end{bmatrix} &= \bar{P}_{SOL}^{0.31} \bigg(\frac{\bar{P}_{SOL,\epsilon}}{\bar{P}_{SOL,i}} \bigg)^{0.05} \max \Bigg(140 \mu^{-0.093} \begin{bmatrix} \bar{c}_{\mathbf{N}\mathbf{e}_{2P}}^{\mathbf{0.04}} \\ \bar{c}_{\mathbf{N},sp}^{\mathbf{0.05}} \\ \bar{c}_{\mathbf{N},sp}^{\mathbf{0.03}} \end{bmatrix} \Bigg), \quad 150 \begin{bmatrix} \bar{c}_{\mathbf{N}\mathbf{e}_{2P}}^{\mathbf{0.04}} \\ \bar{c}_{\mathbf{N},sp}^{\mathbf{0.05}} \end{bmatrix} \Bigg) \\ &= \bar{P}_{SOL}^{0.27} \bigg(\frac{\bar{P}_{SOL,\epsilon}}{\bar{P}_{SOL,i}} \bigg)^{-0.13} \bigg(1 + 0.08 \bigg(1 - \frac{\Gamma_{DT_{Puf}}}{\Gamma_{DT_{SOL}}} \bigg) \bigg)^{-1} \max \Bigg(200 \mu^{-0.19} \begin{bmatrix} \bar{c}_{\mathbf{N}\mathbf{e}_{3P}}^{\mathbf{0.02}} \\ \bar{c}_{\mathbf{N},sp}^{\mathbf{0.23}} \end{bmatrix} \Bigg), \quad 230 \bar{c}_{2sep}^{0.105} \Bigg) \\ &-\text{where } P_{SOL,\epsilon} \equiv (1 - \phi_{\alpha}) P_{\alpha} + P_{ohm} - P_{rad} - P_{ei} + P_{aux,\epsilon} \quad \text{and} \quad P_{SOL,i} \equiv \phi_{\alpha} P_{\alpha} + P_{ei} + P_{aux,i} \end{bmatrix} \end{split}
$$

The DT neutral flux across separatrix [Pa m 3 /s]:

$$
\begin{bmatrix} \Gamma_{DT_{S}}|\mathbf{N}\mathbf{e} \\ \Gamma_{DT_{S}}|\mathbf{N} \end{bmatrix} = \begin{bmatrix} \bar{c}_{\mathbf{N}sg}^{0.86} \\ \bar{c}_{\mathbf{N}_{sep}}^{0.58} \end{bmatrix} \begin{array}{c} 0.0053\bar{P}_{SOL}^{-1.6} \ \mu^{-0.65} \bar{S}_{eng}^{-0.38} \ \Gamma_{DT_{SOL}} \end{array} \begin{pmatrix} 1 + 0.25 \left(1 - \frac{\Gamma_{DT_{pdf}}}{\Gamma_{DT_{SOL}}} \right) \end{pmatrix}
$$

The He neutral flux across the separatrix [Pa m 3 /s]: \bullet

$$
\Gamma_{\alpha_{s}} = 2\bar{P}_{SOL}^{-1} \mu^{-0.33} \bar{c}_{Z_{sep}}^{0.35} \bar{S}_{eng}^{-0.93} f_{He}
$$
\n
$$
\times \max \left(0.0016 \mu^{-1.9} \bar{c}_{Z_{sep}}^{-0.35}, \quad \min \left(\begin{bmatrix} 0.008 \\ 0.024 \end{bmatrix} \mu^{-0.46} \bar{c}_{Z_{sep}}^{-0.57}, \quad \begin{bmatrix} 0.0055 \\ 0.014 \end{bmatrix} \bar{P}_{SOL}^{1.18} \mu^{-1.42} \right) \right)
$$

where $f_{He} = (1.05 \times P_{\alpha})/P_{SOL}$

Plasma Modeling for Divertor-Safe Burn Control in ITER

$$
T_i(t,\psi) = (T_{i,0} - T_u)(1 - \psi/\psi_0)^2 + T_u
$$

Central Ion Temperature: $T_{i,0}$ Central Electron Temperature: $T_{e,0}$ Upstream Separatrix Temperature: T_u

Flat Density Profiles

 $n_e(t, \psi) = n_{e,0} = n_u$

Central Electron Density: $n_{e,0}$ Upstream Separatrix Density: n_u

Radial profiles couple core conditions (T_0 / n_0) dial profiles couple core conditions (I_0 / n_0)
with conditions at the separatrix (T_u / n_u) toroidal magnetic flux coordinate

NOTE: This notation is consistent with TPM

Burn Control Solution: Real-time Optimal Reference Governor

[1] M.D. Boyer and E. Schuster, Plasma Physics and Controlled Fusion 56 104004 (2014).

Burn Control Solution: Real-time Optimal Reference Governor

[1] V. Graber and E. Schuster, Nuclear Fusion 64 (2024) 086007 (15pp).

Real-time Optimal Reference Governor With Divertor Constraint

[Scenario 2]: The controller drives the states *Ei*, *Ee*, γ, *n* (blue-solid lines) to their reference values (dashed-red lines), which are updated over time by the reference governor, by commanding the external heating $P_{\text{aux }i}$, $P_{\text{aux }e}$ and fueling rates S_D , S_T to be provided by the actuators.

Real-time Optimal Reference Governor With Divertor Constraint

[Scenario 2]: Reference governor attempts to drive electron density *ne*, electron temperature *Te*, and fusion power *P^f* (blue-solid lines) to target values (magenta-dotted lines) by updating references sent to controller for states *Ei*, *Ee*, γ, *n* (shown in previous figure). Because the reference optimization was constrained in this simulation, the peak heat load remains below safety limit at the expense of not achieving targets for *ne*, *Te*, *P^f* .

Burn Control Solution: Overview of Proposed Approach

E. Schuster (LU Plama Control Group) **[Divertor-safe Nonlinear Burn Control in LPO](#page-0-0) IAEA TM Long Pulse Operation - October 17, 2024** 35/36

Core-Edge Control Integration is Critical for Safe Reactor Operation

- **Burn-control:** feedback controller, state observer, parameter estimator, actuator allocator
	- − *Techniques handling nonlinearities and uncertainties* → *Performance* ↑ *+ Robustness/Adaptiveness* ↑
	- − *Techniques decoupling controller and observer/allocator* → *Fault Tolerance* ↑ *+ Integration* ↑
- **Reference Gorvernor:** Solves trade-off between core performance and divertor protection
	- Integration of core control with additional machine safety limits → Complement local edge control
- **Integration of burn controller with other competing/coupled controllers**
	- − ELM's, profiles, heating maximization (plasma/actuator coupling)
- **Testing of proposed density** → **burn-control algorithms in 1D simulations is needed [1]**
	- − Further work on actuator/diagnostic/transport modeling and core-edge integration is needed
	- − Assessment: 1- simultaneous burn and profile control for advanced scenarios; 2- actuator dynamics
	- − *Need for multi-zone response model for control synthesis could be determined from simulation results*
- **Testing of proposed density**→ **burn-control algorithms in present devices is needed**
	- $-$ Emulation of α heating, and even particle recycling, is possible through different mechanisms
	- Emulation of ITER's actuators and diagnostics is also possible
- **Combination of data-based and model-based control approaches**
	- − Physics-based model → AI/ML controller [2] vs AI/ML model → Model-based controller

[1] V. Graber and E. Schuster, 33rd Symposium on Fusion Technology (SOFT), Dublin, Ireland, September 22-27, 2024. [2] I. Ward and E. Schuster, 66th APS-DPP Meeting, Atlanta, GA, USA, October 7-11, 2024.