

Adaptive energy-sensitive x-ray cameras for the record longpulse at WEST

L. F. Delgado-Aparicio¹, T. Barbui¹, R. Barnsley², D. Vezinet³, R. Dumont⁴, N. Fedorczak⁴, J. Morales⁴, T. Fonguetti⁴, P. Manas⁴, S. Mazzi⁴, X. Litaduon⁴, F. Imbeaux⁴, K. Hill1, M. Bitter¹, N. Pablant¹, J. Wisniewski¹, B. Luethi⁵, M. Rissi⁵, T. Donath⁵, L. Glatt⁵, P. Hofer⁵, and N. Pilet⁵

¹ Princeton Plasma Physics Laboratory, Princeton, NJ, USA
² ITER Organization, Saint-Paul-les-Durance Cedex, France
³ Commonwealth Fusion Systems, Devens, MA, USA
⁴ CEA, IRFM, Saint-Paul-les-Durance Cedex, France
⁵ DECTRIS Ltd., 5405 Baden-Dattwil, Switzerland

IAEA Viena, Austria October 17th, 2024

Agenda

- 1) Long Pulse operation @ WEST
- 2) X-ray spectroscopy...back to the basics!
- 3) Goals & challenges of multi-energy program
- 4) Circumventing the "W-challenge" at WEST
- 5) Few results and physics
- 6) Implementation of RT detection of W-UFOs @ WEST
- 7) Future tasks
- 8) Summary

Long pulse operations (LPO) open a new era of expertise, training (e.g. physics and engineer) & <u>collaborations</u>

Typical "1-min" shot

- Hot temperature branch @ 4-5 keV with density nearly a factor 2 compared to its predecessor
- Non-inductive (V_{loop} \rightarrow 0) long-pulse discharges with no external input torque and particle source
- Resilience to tungsten UFOs and an improved L-mode confinement ($H_{98y,2} \sim 1.0, \beta_p \sim 1.6 \& \beta_N \sim 0.7$) lasting 6 mins
- Without W-wall conditioning and using a total of 1.146 GJ of injected energy.

Long pulse operations (LPO) open a new era of expertise, training (e.g. physics and engineer) & collaborations

Long pulse operation (LPO) redefines all our diagnostic timescales over eight-nine orders of magnitude

- $\tau_{MHD} \sim 1 100 \ \mu s$
- $\tau_{\rm ELM} \lesssim 1 \ {\rm ms}$
- τ_{UFO} ~ 20-50 ms
- τ_{Transport} ~ 1-20 ms
- $\tau_{\rm F} \sim 50-70 \, {\rm ms}$
- $\tau_{\text{Ex:e,i}} \sim 250 \text{ ms}$

×(10⁸-10⁹)

 $au_{Ip} \sim 100 \text{ s} \ au_{PMI} \sim 100 \text{ s}$

Diagnostic community continues exploring innovative x-ray techniques for fusion

- (1) Important % of the P_{in} is lost as radiation (~50%).
- ② $P_{rad,X}$ is subset of P_{rad} ... high as 50-90%
- ③ Easier to get the signals out than the visible range !!!
- 4 X-rays: dominant source of radiation ($h_v = hc/\lambda \sim T_e$):
 - 100 eV<T_e<20 keV \Rightarrow 0.5 Å < λ <130 Å \Rightarrow X-rays!
 - 20 keV < E_e < 200 keV \Rightarrow SXR to HXR
- (5) Measurement of P_{rad,x} will enable:
- $\Rightarrow \text{Emiss[ph/cm^2s, W/cm^2], n_e, n_Z, T_e, T_Z, V_{\phi}, V_{\theta} \& n_{\text{RE}}}$
- ⑥ Ensure vacuum compatibility and in-situ calibration⇒Important technological & engineer development

Conventional SXR tomography helps to study MHD: e- and ion fishbones b)

C)

0.9

Conventional SXR tomography helps to study MHD: (1,1) kinks, islands and LLMs

Conventional SXR tomography helps to study transport: particle (n_e) and medium- to high-Z (n_Z)

Programmatic GOALs:

(1) RT-centroid (R_0, Z_0) and shape (Ψ) through Shafranov-shift (Δ_{ss})

Τe

[keV]

10

- (2) Real-time detection of UFOs which impact performance
- (3) $n_7 \& \Delta Z_{eff}$ **bracketing** line radiation (BB)
- (4) $T_e \& n_e^2 Z_{eff}$ sampling continuum (FF + FB)
- 5 n_{e nM} (e.g. ECCD, LHCD, runaways)

Novel x-ray detectors enable breakthrough of 100k pixels (minimum) at multiple energy ranges from 2-300 keV

Comp

Vcmp

Smart pixel-technology allows filtering spectra to measure line-emission and/or the continuum

Main diagnostic challenge at WEST is to disentangle n_W and T_e -effects in recorded spectra

Long pulse operations (LPO) open a new era of expertise, training (e.g. physics and engineer) & <u>collaborations</u>

Tungsten multi-energy brightness and emissivities measured for the first time at WEST

Line-integrated brightness

Core multi-energy (ME) fits capture the Maxwellian part of the electron energy distribution function ⇒I_{e,0} BECORD

 $\langle Z_{eff} \rangle \sim 2.7$, T_{e.0}~4.1 keV and H_{98v2}~1.05

16

 (Z_{eff}) ~2.2, T_{e.0}~4.5 keV and H_{98v2}~1

Steady-state non-inductive hot-electron branch with $T_{e,o}$ of the order of 4-5 keV obtained for (10²-10³)× $\tau_{\rm E}$

- T_e-measurement from tungsten-resolved spectra
- Error bars vary between 0.1-0.2 keV
- Very good agreement with ECE (recalibration performed on WEST database)
- Next: RT effort for <u>control-room visualization (1-10 Hz)</u>

Steady-state non-inductive hot-electron branch with $T_{e,o}$ of the order of 4-5 keV obtained for (10²-10³)× $\tau_{\rm E}$

X-ray diagnostics open the window to diagnose it all! ...including UFOs!

- $\tau_{MHD} \sim 1 100 \ \mu s$
- $\tau_{ELM} \lesssim 1 \text{ ms}$
- τ_{Transport} ~ 1-20 ms
- τ_{UFO} ~ 20-50 ms

- $\tau_{\mathsf{E}}\sim 50\text{--}70~\text{ms}$
- $\tau_{\text{Ex:e,i}} \sim 250 \text{ ms}$
- $\tau_{lp} \sim 100 \text{ s}$
- $\tau_{PMI} \sim 100$'s s

X-ray diagnostics open the window to diagnose it all! ...including UFOs!

- $\tau_{MHD} \sim 1 100 \ \mu s$
- $\tau_{ELM} \lesssim 1 \text{ ms}$
- τ_{Transport} ~ 1-20 ms
- τ_{UFO} ~ 20-50 ms

- $\tau_{\mathsf{E}}\sim 50\text{--}70~\text{ms}$
- $au_{\text{Ex:e,i}} \sim 250 \text{ ms}$
- $\tau_{Ip} \sim 100 \text{ s}$
- $au_{PMI} \sim 100$'s s

What is next:

- Study WEST database
- Strengthen signal using low E_{th}~3 keV ⇒x(10-100)
- Sample faster 100-200 Hz
- Test detection latency~10 ms
- Implementation real-time detection of W-UFOs @ WEST
- Use P_{ECRH} @ core or q=2

TASK #1: Constrain W-transport in steady sate without perturbative experiments regardless of H & CD

Ideal addition

TASK #2: Complete tomography with to provide novel non-magnetic internal measurements of R_0 , Z_0 and Δ_{SS}

Ideal addition

TASK #3: Complete tomography with vertical view to constrain W-transport asymmetries

Ideal addition

Possible sources of Z-asymmetries

- 1. Rotation-induced asymmetries
 - L-mode: low rotation
 - H-Mode: higher rotation as $V\varphi_{,\text{RICE}}{\propto}W_{\text{MHD}}$
- 2. ICRH-induced asymmetries @ high-field-side (ion V $_{\perp}$ vs V $_{||}$ effects)

Summary

- It is now possible to simultaneously record HR images of x-ray photons at single OR multiple energy ranges.
- 2) Solved main challenges of multi-energy technique circumventing radiative recombination steps and line-emission from medium to high-Z impurities
- 3) Tested multi-energy systems at Alcator C-Mod, MST and WEST (long-pulse)
- 4) Latest results @ WEST:
 - $T_{e,0}(t)$ and $n_W(t)$ at 1-100 Hz in L-mode long-pulse operation at WEST
 - Detection of W-UFOS
- 5) What is next? a) RT b) 2D tomography, c) W-transport and d) measure J and q.

 $T_{e0}(t)$

a

1 Hz

Novel x-ray detectors enable breakthrough of 100k pixels (minimum) at multiple energy ranges from 2-300 keV

Old technology: metal filters

New technology electronics

"Constant" width of electronic response is a great improvement over the use of filters

Technology tested at MST & WEST enables different options upon arrangements of threshold energies

Meta-pixel configuration can be useful for long-range measurements using small openings Fluence_{max} ~ 10¹³⁻¹⁴ n/cm²/MeV

- Neutron-flux for ITER-DT and SPARC-DT scenarios can be as high as 10¹⁹-10²⁰ n/s
- ALARA: As Low As Reasonably Achievable
- $D=10m \Rightarrow F_n \sim 8 \times (10^{11}-10^{12}) n/cm^2/s$

1 MW of DT neutrons

 $\begin{array}{c} \sim 4.4 \times 10^{17} \text{ n/s} \\ \text{Assuming, D=15 m} \\ \Rightarrow F_n \sim 1.5 \times 10^{10} \text{ n/cm}^2\text{/s} \\ \Delta t\text{=}5\text{-}10 \text{ s} \\ \text{Fluence} \sim 10^{11} \text{ n/cm}^2\text{/shot} \end{array}$

"Meta"-pixel

