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WEST tokamak: a W-test bed for ITER operation

WEST: Long Pulse capability, dominant electron heating, no external momentum source
m Superconducting magnets, standard magnetic field 3.7 T
m LHCD power up to 7 MW — 1000 s [X. Regal-Mezin Tuesday]
Plasma volume : 15 m3
m ICRH power up to 9 MW RN L L TTTT T ? R=25m,a=05m
s ECRH 1 MW (2024), 3 MW from 2025 1 N
[J.M. Bernard Tuesday] SR il =
m Lower/Upper X-point, Double-Null configurations T el

Tungsten environment

m Actively cooled ITER-grade tungsten divertor
m Inner / outer bumpers

= W coated until mid-2020,
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m BN at mid-plane until spring 2024, o R
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= Bulk W from autumn 2024 N

ITER grade divertor
bulk W
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Unique test bed for adressing Long pulse operation in a W
environment & PWI timescales

@ IAEA Technical Meeting on Long Pulse Operation 2024 WEST in July 2021
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Tungsten contamination: a resilient radiative fraction

Radiative fraction is weakly dependent on injected power and density

= Radiative fraction centered around f,_ "' ~ 50 % - corresponding to c,, ~ 2-4x10*

m This resilience is recovered by SOLEDGE-ERO2.0 simulations [Di Genova PFMC’23]

m More power to the SOL <> more radiation: strongly coupled core (radiation) / edge (erosion) system
m Gaps with limiters (and magnetic configuration at upper divertor) are important players
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Tungsten contamination: boronization limited in time

Radiative fraction is reduced shortly after boronization

m Glow Discharge Boronization (He+B,D,) — typical boron mass 10g [A. Gallo NME’24]
m The time scale of the boronization effect is limited (on average ~1 GJ vs ~40 GJ for a campaign)
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Tungsten contamination: boronization limited in time

Radiative fraction is reduced shortly after boronization
m Glow Discharge Boronization (He+B,D,) — typical boron mass 10g [A. Gallo NME’24]
m The time scale of the boronization effect is limited (on average ~1 GJ vs ~40 GJ for a campaign)
m Analysis ongoing using identical pulses performed for fuel retention studies
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Tungsten contamination: boronization limited in time

Radiative fraction is reduced shortly after boronization
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[K. Afonin NME’24, R. Lunsford NME’24]

Glow Discharge Boronization (He+B,D;) — typical boron mass 10g [A. Gallo NME’24]
The time scale of the boronization effect is limited (on average ~1 GJ vs ~40 GJ for a campaign)
On the WEST database, for several shots after boronization, f, 4 is reduced by 10 to 20% on average

Impurity Powder Dropper (IPD) experiments shows cumulative effect on radiative fraction (up to 35 s
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Core tungsten transport: low central tungsten peaking

Core tungsten peaking is moderate due to limited neoclassical convection:
m No external momentum input

m No central particle source

m Average peaking < 2 (mildly peaked to flat profiles) over the reduced WEST database and from the
modelling (TGLF + NEO)

m Highest peaking obtained from ICRH heated scenarios
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Central radiative collapse observed

However radiative collapses are observed due to lack of central heating as the starting point:
m In LHCD heated plasmas

m Combination of off-axis LHCD power deposition and increased inward tungsten transport [V. Ostuni NF’21]
m In ICRH heated plasmas

m Fast ions ripple losses reducing central electron heating + rotation induced mild tungsten peaking [Maget

PPCF’23
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Current drive efficiency and long pulse operational

domain: predict first

Operational domain determined by current drive efficiency and machine specific constraints
m Integrated modelling to guide scenario development (0D METIS, JINTRAC [T. Fonghetti Thursday])

JINTRAC

1, (KA)
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= Optimization of low V;,,,, operation

m Temperature increase on upper elements
Impacted by fast electron ripple losses ->
triggers safety limit

m Current drive efficiency with energy
confinement time

m Greenwald fraction
m Reversed q profiles triggering MHD

m Results in low plasma current and medium
density/heating power (LHCD only)

m Long pulse operation involves much more
than that [V. Lamaison, L. Meunier
Wednesday]
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Record duration pulse of 364 s

Record long pulse obtained for 364 s and 1.15 GJ of injected energy
= Double feedback control scheme developed on I,, and Vi,,, [R. NouailletasThursday]

m Stable discharge obtained at V;,,, = 3 mV (1100 s can be achieved) with I,, = 0.27 MA, P,y = 3.2 MW
and 1 = 2.9 10" m™3

m Similar Lower Hybrid current drive
efficiencies obtained compared to Tore
‘ n,; [x10'°m2) Supra

Puy [MW] m L-mode with central T, ~ 4 — 5 keV [L.F.
Delgado-Aparicio Thursday] and Lgg ~
1.25, fy~0.7, B,~1.6
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2 . . . .
P [MW] contamination but increase in Z,gy
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Long Pulse Operation and associated challenges

New challenges above the GJ range and towards 1000 s
m Outgassing of remaining far-off inertial elements

m Evidence of progressive conditioning
m Increased probability of unforeseen events

m UFOs, but also Internal Transport Barrier triggering = MHD

& actuator required (ECRH)
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Limited performances of long pulses in current devices
Low performances in terms of triple product are obtained in long pulse tokamak plasmas [X. Litaudon

NF’23]

m Reduced confinement times at low plasma currents

m Dominant electron heating with low densities results in limited ion temperature [M. Beurskens NF’21]

m Linked to t,;/tg if dominant electron heating [P. Manas NF 2024].

m Increasing density, provided sufficient CD efficiency and central heating (with the help of ECRH)

m Direct ion heating (ICRH), radiative scenario...

m Problem arising in current machines but not expected for a reactor
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High Fluence in attached divertor regime: UFO production

m High Fluence campaign performed in 2023 in L-mode attached divertor regime
m Cumulated plasma time of about 3h in attached regime (T, divertor ~20 eV), without boronisation
m Cumulated fluence at lower divertor reached 5x10%% D/m? (more than an ITER PFPO pulse)
m Divertor erosion generates deposits, flakes and UFOs
m Short peaks of radiated power, becoming more and more frequent 8 impact on plasma operation
m Extensive identification and analysis of UFOs [Gaspar NME’24]
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Different UFO classes and W mass mobilized

m Formation / ejection of flakes
m 3 classes: minor impact (1)
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Different UFO classes and W mass mobilized

m Formation / ejection of flakes
m 3 classes: minor impact (1) / disruption after more than 0.2s (2) / disruption after less than 0.2s (3)
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Different UFO classes and W mass mobilized

m Formation / ejection of flakes
m 3 classes: minor impact (1) / disruption after more than 0.2s (2) / disruption after less than 0.2s (3)
m Stationary regime after ~ 100 min of plasma for classes 1 and 2, but class 3 still growing
m The W mass mobilized by the UFOs of class 1 and 2 is evaluated
> Average masses: 14 pg and 64 ug for classes 1 and 2 2 ~140 pg/min of W mobilized in the UFOs
> But no UFO issues reported on JET high fluence experiments [Brezinsek NF’19] — divertor geometry ?
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UFO composition and radiation resilience

m Composition of the UFOs
m From Z_ / bolometry measurements: mostly tungsten, but light impurities sometimes present

> In line with previous post-mortem results on deposits composition [Hakola NF’21, Balden PS’21,
Martin PS’21]

m Consequences for plasma operation
m Class 1: reduction of incoming W flux after UFO & fixed operation pointin f_, (resilience)
m Classes 2 & 3: radiation peak impacts safety factor profile & MHD stability degraded

All W Class 1 : #58490, turo = 5.5 8
T T T T
0.6} - !
<> : b I:’rad
| ¥ Paiv
< ISP
+ OSP
1 No W
4 0 L | L
bulk -0.2  -0.1 0 0.1 0.2
AP MW
rad [ ] t - tyro [S]
@ IAEA Technical Meeting on Long Pulse Operation 2024 14/10/2024

\

)
)

]

N

N
s

~,

=

\

/7
A\



UFO origin: thermal stress, HFS, disruption flakes
m Origin of the UFOs

m Temporal: mostly at the start of the additional power & thermal stress is the main trigger
m Spatial: mostly coming from the High Field Side (HFS) region [Gaspar NME’24]

> post-mortem: ~50um thick deposits in HFS area [Martin NME’24]

> Consistent with evaluation of cumulated W gross erosion [Fedorczak NME’24]
m Historical: most UFQOs originate directly from the thick deposits

> ~30% of disruptive UFOs are flakes from a preceding disruption
Start of additional power

[Gaspar PSI’24]
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X-Point Radiator scenario

m Preventing W contamination from divertor: a low temperature at the strike points is required
m Spontaneous transition to low divertor temperature obtained with light impurity seeding [Bernert PS’24]
> Radiative ring formation above the divertor, transition time scale ~ s Similar in AUG, JET,
> In WEST : low temperature < 10 eV / attached plasma / weak upstream impact TCV, KSTAR, ...
m XPR scenario in alternative configurations

m Double-Null configuration: alternative distribution of W sources
m Compact configuration (X-point—target): gain in plasma volume

outer midplane
N2 injection valve

et

attached divertor
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X-Point Radiator scenario impact on peﬂormanc%
tungsten transport

m Light impurity seeding impacts confinement, tungsten source and transport
m Increased neutron rate and H-factor with Z_« -> increased triple product
m Tungsten contamination reduced by only ~ 40% & other sources not negligible
m Tungsten peaking is reduced [J. Dominski submitted to NF]
m Increase neoclassical diffusion

m Reduced turbulent transport
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X-Point Radiator scenario impact on peﬂormanc%
tungsten transport

m Light impurity seeding impacts confinement, tungsten source and transport
m Increased neutron rate and H-factor with Z_« -> increased triple product
m Tungsten contamination reduced by only ~ 40% & other sources not negligible
m Tungsten peaking is reduced [J. Dominski submitted to NF]
m Increase neoclassical diffusion
m Reduced turbulent transport

m One-minute compatible XPR scenario achieved (Vioop ~ 90 mV)
m Adressing ITER-grad divertor ageing at low divertor temperature conditions

m Deposits formation?
m UFOs generation from existing deposits?
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Summary

Progress towards controlled LPO in full tungsten environment
m Record long pulse duration of 364 s to be extended
m Predict first integrated modelling intensively used for scenario development

Resilience of radiative fraction and tungsten transport
m Stands around 50% in WEST - coupling between core radiation and erosion

m Gaps with limiters (and magnetic configuration at upper divertor) are important players
m Wall conditioning by Glow Discharge Boronisations limited in time
m Impurity Powder Dropper conditioning possibilities explored

Challenges from Long pulse operation with an ITER-grade divertor

m ITER relevant fluences obtained: deposit formation and UFO generation in attached regime
m Strong impact on WEST operation

m Extrapolation to ITER uncertain (divertor geometry)
m Low divertor temperature X-point radiator scenario:

m Targeting ~1 min. discharges: for future characterization of PWI after high fluence campaign
m Higher performances (triple product)
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“This work has been carried out within the framework of the EUROfusion Consortium, funded
by the European Union via the Euratom Research and Training Programme (Grant Agreement
No 101052200 — EUROfusion). Views and opinions expressed are however those of the

WES I author(s) only and do not necessarily reflect those of the European Union or the European
Commission. Neither the European Union nor the European Commission can be held
responsible for them.”
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