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DIII-D Program Aims to Establish the Physics Basis of a 

Long-Pulse Compact Tokamak Fusion Pilot Plant

• Multiple compact FPP design studies exist

• CAT-DEMO (Buttery NF ‘21) is used as a guide 

here

• There are many physics uncertainties, including 
how to achieve sufficient:

1. Core performance (stability, confinement, 

current drive)

2. Heat & particle exhaust
3. Integration of core- and edge- constraints

CAT-D
R (m) 4
a (m) 1.29
BT (T) 7
IP (MA) 8.1
 2
N 3.6
T % 3.2
fBS 0.9

H98y2 1.51
q95 6.5
Q 17.3
PFUS (MW) 658
PNET(MW) 200
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How Far Towards FPP Conditions Must We Go To 

Sufficiently Reduce Physics Uncertainty?

• Some physics has “phase 
transitions where behavior 

changes
• Some known, e.g., N>no-wall limit

• Some uncertain, e.g., turbulence 
regime vs. rotation

• Aim to be on the right side of 
known transitions & have ability to 

sample large parameter range

• Balance maximizing integrated 

performance vs. wider scans in 
select parameters

Controlling variable
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No-wall N limit

Electron-to-ion heating, coupling

Neutral penetration less than 
pedestal width

Etc.

Innovation 

& model validation
are key
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DIII-D Can Improve Confidence in Physics for FPP by 

Expanding the Ranges of Achievable Parameters

• DIII-D steady-state scenario 
shots approach some, not all 

FPP values

• Stronger shaping & higher 

NBI power (20 MW) 
expected to expand ranges

• Goal of this study: predict 

minimum ECH power to 

adequately advance 
parameter ranges towards 

FPP
Lower torque hybrid (3-4.5s) Thome NF ‘21
High-P “AT” (2.8-3.4s) Huang NF ‘24

Lower torque high-P (4-4.7s) Ding Nature, ‘24
Steady-state hybrid (2.5-4.5s) Turco NF ‘15
ITER-shaped, ELM-suppressed steady-state hybrid (3.5-4.5s) Petty NF ‘17

q||~PSOLB/RN

N/(N
no-wall)

T

H98

fBS

Te/Ti

(M/q95)
-1

(Wfast/Wtot)
-1

(*e,ped)-1

fGW,ped

(LD/wped)-1∝ 

ne,sepwped
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Consider 6 Experimental Physics Goals

Physics to understand/Solutions to find Parameter range to aim for

Pedestal structure with high opacity & 
low collisionality

Advanced Inductive (AI) scenario with 

LD/wped<0.2, *ped<0.2, fGW,ped>0.8
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metrics to > ~60% of CAT-D values

How to manage divertor heat flux PSOLB/RN significant fraction of 

unmitigated CAT-D
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Integrated Modeling Predictions Done Using FASTRAN-IPS*

• Integrates physics models for transport, H&CD, 
pedestal, MHD stability, etc.

• Built a database with random sampling over 

ranges of density, BT (1.6-2.2T), PNBI (up to 

20MW), PECH (up to 14MW, 105/138/170GHz)

• Generated a reduced system model from 

random sampling to predict ECH needs to reach 

targets

*Park J.M. et al 2018 Integrated modeling of high βN 

steady state scenario on DIII-D Phys. Plasmas 25 012506 
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Models Say ECH Does Not Help Obtain Opaque, Low * 

Pedestals in Advanced Inductive/Hybrid Plasmas

ne,ped (1019/m3) ne,ped (1019/m3)

• FPP-relevant pedestals predicted on 
DIII-D at ne,ped > ~15x1019 m-3

- Neutral penetration ~ wped/4

• ECH use* limited to ne,ped< ~14x1019 m-3

• EPED predicts pedestal parameters are 

insensitive to large variations in input 

power (ECH & NBI)

• Caveat: EPED may not be sufficient for 
predicting impacts of ECH on achieving 

relevant pedestals (backup slides)

BT=2.2 T, q95=4, 

IP=2.8MA, 

q95=5, IP=2.2MA

*e,ped

Can’t 
use 
ECH

80 from FRANTIC code
*Heating only with 140GHz O2 + 170GHz X3
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~5 MW ECH is Sufficient For Access to Relevant Core 

Transport Regime in an Advanced Inductive Scenario

5 MW co- + 10 MW balanced-NBI, 

ne,ped=9x1019m-3, q95=4

M/q95 

0.05

0.025

• Most curves level off 
above PECH~5 MW

• 5 MW:

- Achieves Te/Ti>1

- Surpasses Wf/Wtot, T, 
*ped targets

- Rotation shear still too 

high, but much closer

• Lower ne,ped moves most 

parameters in the wrong 

directions, higher ne,ped 

doesn’t help much

CAT-D value

Heating only with 140GHz O2 + 170GHz X3
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Testing Impacts of Rotation, Te/Ti, Wf/Wtot on AT Core 

Above No-Wall Limit Requires ~10 MW ECH 

• Use 140GHz X2 off-axis CD + 170GHz 
O3 or X3 on-axis

- max neped=7x1019m-3

• 10 MW hits Te/Ti=1 when fNI is relaxed 

to 0.85

• Approach low rotation even with co-

NBI in this case

• N is above no-wall limit & CAT-D N

• Will explore RWM stability & transport 
PECH (MW)

BT=2.2 T, q95=7, co-NBI

Shot 147634
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10 MW ECH Accesses Sustained Low ො𝒔 & High MHD at ~0.6 to 

Explore AT Core Operation in 2nd Stable Regime

Ding Rev Mod Phys. ‘23

PECH (MW)

Low s-

Fully 
noninductive

Well 
above no-
wall limit

High fusion 
potential

Below CAT *

2nd 
stable

IPS-FASTRAN Simulations: BT=2.2 T, q95=7, co-NBI
Evolving High-P Shot

(=0.6)
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14 MW ECH Helps Explore Interactions of Multiple Effects in 

AT Core But Plasmas Would Still Fall Short in Some Metrics

N/4li

T

H98

fBS

Te/Ti

(M/q95)
-1

(Wfast/Wtot)
-1

(*e,ped)-1

fGW,ped

• 14 MW ECH, 10 MW 
balanced NBI + 4 MW co-

NBI, B=2.2 T, q95=7.5, 

neped=3.5x1019m-3

• Achieve > 60% of CAT 

values for several core 

metrics
• Fall short in rotation

- But H98/H98,noExB is 

within ~20% of CAT 

value

• ECH use limits neped  
7x1019m-3 → fGW,ped < 

~50% without lowering 

lowering IP
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14 MW ECH Would Pose a Divertor Heat Flux Mitigation 

Challenge ~35% That of CAT-D 

% CAT-D q||~ PSOLBT/RN

PECH (MW)

• Existing DIII-D discharges are 5-

10% of CAT

• 20 MW NBI + PECH

• 2.2 T
• R=1.67 m

• N=1 divertor
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Summary:

• Physics uncertainty for long-pulse operation can be reduced by going to 
more relevant regimes in DIII-D with upgrades

• Integrated physics model simulations were deployed to estimate the 

minimum required ECH power to achieve targeted parameters

• Initial findings:

• Opaque, low * pedestal studies may not require any ECH

• Pushing AI/Hybrid core to relevant parameters: 5 MW ECH

• Pushing some metrics to relevant values in AT core: at least 10 MW ECH

• Push all AT core metrics to better than ~60% of FPP values, & produce 
significantly greater heat flux challenge: at least 14 MW ECH
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Caveat: EPED May Not Be Sufficient For Predicting Impacts 

of ECH on Achieving FPP-Relevant Pedestals
• No reliable physics models for pedestal 

scenarios with 𝛁P limited by transport 

below KBM limit, e.g., WPQH-mode

IPS-FASTRAN pped (kPa)

neped (1019/m3)

WPQH scaling

EPED1 

scaling

N = 2, 3, 4

N = 3, 4

wped = 

0.152p
0.765

wped = 

0.76p
0. 5
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Caveat: EPED May Not Be Sufficient For Predicting Impacts 

of ECH on Achieving FPP-Relevant Pedestals
• No reliable physics models for pedestal 

scenarios with 𝛁P limited by transport 

below KBM limit, e.g., WPQH-mode

• Experiments show ECH near pedestal 

can perturb gradients → could more 
power trigger transport bifurcation ?

Groebner, 2013 NF

4x Pheat,e → 50% increase 
in ∇Te & 30% drop in ∇ne 
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Caveat: EPED May Not Be Sufficient For Predicting Impacts 

of ECH on Achieving FPP-Relevant Pedestals
• No reliable physics models for pedestal 

scenarios with 𝛁P limited by transport 

below KBM limit, e.g., WPQH-mode

• Experiments show ECH near pedestal 

can perturb gradients → could more 
power trigger transport bifurcation ?

• Experiments also show core-ECH can 

make profiles more MHD-stable (not 

direct NTM stabilization) to better 
sustain high pedestals

➢ ECH likely has benefits for pedestal 

studies not captured by models
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We Focus on Several Key Parameters

That Are Relevant For Physics Gaps

Metric Significance

q||~PSOLB/R Divertor heat flux challenge

N/4li RWM stability above no-wall limit

T Adequate fusion performance

H98y2 Energy confinement quality

fBS Steady-state or long-pulse

Te/Ti Turbulent transport regimes

M/q95 Effectiveness of rotational suppression of turbulence

Wfast/Wtot Energetic particle mode drive/damp

*e,ped Collisionless hot core

fGW,ped Operate close to density limit

LD/wped Pedestal opaque to neutrals, structure set by transport, not fueling
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ECH at 2.2 T 
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Flexible Multi-Frequency (110/137/170 GHz) Gyrotrons 

Would Cover Whole Range of BT in a DIII-D Upgrade

On-Axis ECH Location

Dimensionless
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