How DIII-D Can Access New Plasma Regimes with More ECH to Close Long Pulse Fusion Pilot Plant Knowledge Gaps

- C. Holcomb¹, J. Park², R. Buttery³, C. Petty³, A. Garofalo³
- ¹Lawrence Livermore National Laboratory
 ²Oak Ridge National Laboratory
 ³General Atomics

October 17, 2024 Vienna, Austria 2nd IAEA Topical Meeting on Long Pulse Operation of Fusion Devices

This work was performed under the auspices of the U.S. Department of Energy under contracts DE-AC52-07NA27344, DE-AC05-000R22725, and DE-FC02-04ER54698. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences.

DIII-D Program Aims to Establish the Physics Basis of a Long-Pulse Compact Tokamak Fusion Pilot Plant

	CAT-D
R (m)	4
a (m)	1.29
B _T (T)	7
I _P (MA)	8.1
κ	2
β _N	3.6
β _T %	3.2
f _{BS}	0.9
H _{98v2}	1.51
q ₉₅	6.5
Q	17.3
P _{FUS} (MW)	658
P _{NET} (MW)	200

- Multiple compact FPP design studies exist
- CAT-DEMO (Buttery NF '21) is used as a guide here
- There are many physics uncertainties, including <u>how to achieve sufficient</u>:
 - 1. Core performance (stability, confinement, current drive)
 - 2. Heat & particle exhaust
 - 3. Integration of core- and edge- constraints

How Far Towards FPP Conditions Must We Go To Sufficiently Reduce Physics Uncertainty?

Controlling variable

- Some physics has "phase transitions where behavior changes
 - Some known, e.g., β_N >no-wall limit
 - Some uncertain, e.g., turbulence regime vs. rotation
- Aim to be on the right side of known transitions & have ability to sample large parameter range
- Balance maximizing integrated performance vs. wider scans in select parameters

DIII-D Can Improve Confidence in Physics for FPP by Expanding the Ranges of Achievable Parameters

- DIII-D steady-state scenario shots approach some, not all FPP values
- Stronger shaping & higher NBI power (20 MW) expected to expand ranges
- <u>Goal of this study</u>: predict minimum ECH power to adequately advance parameter ranges towards FPP

Lower torque hybrid (3-4.5s) Thome NF '21 High- β_P "AT" (2.8-3.4s) Huang NF '24 Lower torque high- β_P (4-4.7s) Ding Nature, '24 Steady-state hybrid (2.5-4.5s) Turco NF '15 ITER-shaped, ELM-suppressed steady-state hybrid (3.5-4.5s) Petty NF '17

Physics to understand/Solutions to find	Parameter range to aim for
Pedestal structure with high opacity & low collisionality	Advanced Inductive (AI) scenario with L_D/w_{ped} <0.2, v^*_{ped} <0.2, $f_{GW,ped}$ >0.8

Physics to understand/Solutions to find	Parameter range to aim for
Pedestal structure with high opacity & low collisionality	Advanced Inductive (AI) scenario with L_D/w_{ped} < 0.2, v^*_{ped} < 0.2, $f_{GW,ped}$ > 0.8
Relevant core transport regime in Al	T_e/T_i >1, ΔMφ/q ₉₅ <10 ⁻³ , W _{fast} /W _{tot} <15%, v^*_{ped} <0.2, β_T >3%

Physics to understand/Solutions to find	Parameter range to aim for
Pedestal structure with high opacity & low collisionality	Advanced Inductive (AI) scenario with L_D/w_{ped} <0.2, v^*_{ped} <0.2, $f_{GW,ped}$ >0.8
Relevant core transport regime in Al	T_e/T_i >1, $\Delta M\phi/q_{95}$ <10 ⁻³ , W_{fast}/W_{tot} <15%, v_{ped}^* <0.2, β_T >3%
Impacts of low v _{\u03c6} , high T _e /T _i on advanced tokamak (AT) core above no-wall limit	$\Delta M_{\phi}/q_{95}$ <10 ⁻³ , T _e /T _i >1, q _{min} >2, β_{N} =4li-6li, β_{T} >3%,

Physics to understand/Solutions to find	Parameter range to aim for
Pedestal structure with high opacity & low collisionality	Advanced Inductive (AI) scenario with L_D/w_{ped} < 0.2, v^*_{ped} < 0.2, $f_{GW,ped}$ > 0.8
Relevant core transport regime in Al	T_e/T_i >1, $\Delta M\phi/q_{95}$ <10 ⁻³ , W_{fast}/W_{tot} <15%, v_{ped}^* <0.2, β_T >3%
Impacts of low v _{\u03c6} , high T _e /T _i on advanced tokamak (AT) core above no-wall limit	$\Delta M_{\phi}/q_{95}$ <10 ⁻³ , T _e /T _i >1, q _{min} >2, β_{N} =4li-6li, β_{T} >3%,
How to sustain AT high f_{BS} & H_{98} by optimizing \hat{s} & α_{MHD}	\widehat{s} <-0.5, α_{MHD} >3 at ρ ~0.6, q_{min} >2, β_N >3, v^*_{ped} <0.2

Physics to understand/Solutions to find	Parameter range to aim for
Pedestal structure with high opacity & low collisionality	Advanced Inductive (AI) scenario with L_D/w_{ped} < 0.2, v^*_{ped} < 0.2, $f_{GW,ped}$ > 0.8
Relevant core transport regime in Al	T_e/T_i >1, $\Delta M\phi/q_{95}$ <10 ⁻³ , W_{fast}/W_{tot} <15%, v^*_{ped} <0.2, β_T >3%
Impacts of low v _{\u03c6} , high T _e /T _i on advanced tokamak (AT) core above no-wall limit	$\Delta M_{\phi}/q_{95} < 10^{-3}$, $T_{e}/T_{i} > 1$, $q_{min} > 2$, $\beta_{N} = 4$ li-6li, $\beta_{T} > 3\%$,
How to sustain AT high f_{BS} & H_{98} by optimizing \hat{s} & α_{MHD}	\widehat{s} <-0.5, α_{MHD} >3 at ρ ~0.6, q_{min} >2, β_N >3, v^*_{ped} <0.2
Interplay between effects in AT core	Simultaneous increase of key core metrics to > ~60% of CAT-D values

Physics to understand/Solutions to find	Parameter range to aim for
Pedestal structure with high opacity & low collisionality	Advanced Inductive (AI) scenario with L_D/w_{ped} <0.2, v_{ped}^* <0.2, $f_{GW,ped}$ >0.8
Relevant core transport regime in Al	T_e/T_i >1, $\Delta M\phi/q_{95}$ <10 ⁻³ , W_{fast}/W_{tot} <15%, v_{ped}^* <0.2, β_T >3%
Impacts of low v _{\$\phi\$} , high T _e /T _i on advanced tokamak (AT) core above no-wall limit	$\Delta M_{\phi}/q_{95} < 10^{-3}$, $T_{e}/T_{i} > 1$, $q_{min} > 2$, $\beta_{N} = 4$ li-6li, $\beta_{T} > 3\%$,
How to sustain AT high f_{BS} & H_{98} by optimizing \hat{s} & α_{MHD}	\widehat{s} <-0.5, α_{MHD} >3 at ρ ~0.6, q_{min} >2, β_N >3, v^*_{ped} <0.2
Interplay between effects in AT core	Simultaneous increase of key core metrics to > ~60% of CAT-D values
How to manage divertor heat flux	P _{SOL} B/RN significant fraction of unmitigated CAT-D

Integrated Modeling Predictions Done Using FASTRAN-IPS*

- Integrates physics models for transport, H&CD, pedestal, MHD stability, etc.
- Built a database with random sampling over ranges of density, B_T (1.6-2.2T), P_{NBI} (up to 20MW), P_{ECH} (up to 14MW, 105/138/170GHz)
- Generated a reduced system model from random sampling to predict ECH needs to reach targets

*Park J.M. *et al* 2018 Integrated modeling of high β_N steady state scenario on DIII-D *Phys. Plasmas* **25** 012506

Models Say ECH Does Not Help Obtain Opaque, Low v^* Pedestals in Advanced Inductive/Hybrid Plasmas

 FPP-relevant pedestals predicted on DIII-D at n_{e.ped} > ~15x10¹⁹ m⁻³

- Neutral penetration ~ $w_{ped}/4$

- ECH use^{*} limited to $n_{e,ped} < \sim 14 \times 10^{19} \text{ m}^{-3}$
- EPED predicts pedestal parameters are insensitive to large variations in input power (ECH & NBI)
- Caveat: EPED may not be sufficient for predicting impacts of ECH on achieving relevant pedestals (backup slides)

~5 MW ECH is Sufficient For Access to Relevant Core Transport Regime in an Advanced Inductive Scenario

 Most curves level off above P_{ECH}~5 MW

• 5 MW:

- Achieves T_e/T_i>1
- Surpasses W_f/W_{tot} , β_T , v_{ped}^* targets
- Rotation shear still too high, but much closer
- Lower n_{e,ped} moves most parameters in the wrong directions, higher n_{e,ped} doesn't help much

Heating only with 140GHz O2 + 170GHz X3

Testing Impacts of Rotation, T_e/T_i , W_f/W_{tot} on AT Core Above No-Wall Limit Requires ~10 MW ECH

- Use 140GHz X2 off-axis CD + 170GHz O3 or X3 on-axis
 - max $n_{eped} = 7x10^{19} m^{-3}$
- 10 MW hits $T_e/T_i=1$ when f_{NI} is relaxed to 0.85
- Approach low rotation even with co-NBI in this case
- β_N is above no-wall limit & CAT-D β_N
- Will explore RWM stability & transport

10 MW ECH Accesses Sustained Low \hat{s} & High α_{MHD} at ρ ~0.6 to Explore AT Core Operation in 2nd Stable Regime

14 MW ECH Helps Explore Interactions of Multiple Effects in AT Core But Plasmas Would Still Fall Short in Some Metrics

- 14 MW ECH, 10 MW <u>balanced</u> NBI + 4 MW co-NBI, B=2.2 T, q₉₅=7.5, n_{eped}=3.5x10¹⁹m⁻³
- Achieve > 60% of CAT values for several core metrics
- Fall short in rotation
 - But H₉₈/H_{98,noExB} is within ~20% of CAT value
- ECH use limits $n_{eped} \le 7x10^{19}m^{-3} \rightarrow f_{GW,ped} < \sim 50\%$ without lowering lowering I_P

14 MW ECH Would Pose a Divertor Heat Flux Mitigation Challenge ~35% That of CAT-D

% CAT-D q₁₁ ~ P_{SOL}B_T/RN

- Existing DIII-D discharges are 5-10% of CAT
- 20 MW NBI + P_{ECH}
- 2.2 T
- R=1.67 m
- N=1 divertor

Summary:

- Physics uncertainty for long-pulse operation can be reduced by going to more relevant regimes in DIII-D with upgrades
- Integrated physics model simulations were deployed to estimate the minimum required ECH power to achieve targeted parameters
- Initial findings:
 - Opaque, low v^* pedestal studies may not require any ECH
 - Pushing AI/Hybrid core to relevant parameters: 5 MW ECH
 - Pushing some metrics to relevant values in AT core: at least 10 MW ECH
 - Push all AT core metrics to better than ~60% of FPP values, & produce significantly greater heat flux challenge: at least 14 MW ECH

Caveat: EPED May Not Be Sufficient For Predicting Impacts of ECH on Achieving FPP-Relevant Pedestals

No reliable physics models for pedestal scenarios with ∇P limited by transport below KBM limit, e.g., WPQH-mode

Caveat: EPED May Not Be Sufficient For Predicting Impacts of ECH on Achieving FPP-Relevant Pedestals

Figure 17. Variations of pedestal (*a*) ∇T_e , (*b*) ∇n_e and (*c*) η_e with electron power flow into the pedestal in the power scan in DIII-D. Heating power is a combination of beam power into the electrons and ECH power, deposited on top of the pedestal.

4x $P_{heat,e} \rightarrow 50\%$ increase in ∇T_e & 30% drop in ∇n_e

- No reliable physics models for pedestal scenarios with ∇P limited by transport below KBM limit, e.g., WPQH-mode
- Experiments show ECH near pedestal can perturb gradients → could more power trigger transport bifurcation ?

Caveat: EPED May Not Be Sufficient For Predicting Impacts of ECH on Achieving FPP-Relevant Pedestals

- No reliable physics models for pedestal scenarios with VP limited by transport below KBM limit, e.g., WPQH-mode
- Experiments show ECH near pedestal can perturb gradients → could more power trigger transport bifurcation ?
- Experiments also show core-ECH can make profiles more MHD-stable (not direct NTM stabilization) to better sustain high pedestals
- ECH likely has benefits for pedestal studies not captured by models

We Focus on Several Key Parameters That Are Relevant For Physics Gaps

22

Metric	Significance
$q_{ } \sim P_{SOL}B/R$	Divertor heat flux challenge
$\beta_N/4$ li	RWM stability above no-wall limit
β_T	Adequate fusion performance
H _{98y2}	Energy confinement quality
f _{BS}	Steady-state or long-pulse
T_e/T_i	Turbulent transport regimes
$\Delta M_{\phi}/q_{95}$	Effectiveness of rotational suppression of turbulence
W _{fast} /W _{tot}	Energetic particle mode drive/damp
$v^*_{e,ped}$	Collisionless hot core
$f_{GW,ped}$	Operate close to density limit
L_D/w_{ped}	Pedestal opaque to neutrals, structure set by transport, not fueling

ECH at 2.2 T

Flexible Multi-Frequency (110/137/170 GHz) Gyrotrons Would Cover Whole Range of B_T in a DIII-D Upgrade

