Development of Long Pulse Fully Non-inductive High-confinement Plasma with Full Tungsten Limiter/Divertor on EAST

by

X. Gong^{1*}

with J. Huang¹, J. Qian¹, A. M. Garofalo², A. Loarte³, R.A. Pitts³, T. Wauters³, R. Ding¹, X. Zhang¹, L. Zeng¹, B. Zhang¹, L. Xu¹, P. Li¹, W. Liu¹, K. Li¹, A. Ekedahl⁴, R. Maingi⁵, G. Zuo¹, Y. Yu¹, Q. Zang¹, L. Wang¹, H. Liu¹, Y. Zhang¹, L. Zhang¹, T. Zhang¹, D. Yao¹, Q. Yang¹, G. Li¹, Q. Ren¹, M. Li¹, B. Xiao¹, G. Xu¹, J. Hu¹, K. Lu¹, J. Chen¹, F. Liu¹, X, Wu¹,Y. Song¹, B. Wan¹, J. Li¹ and EAST team

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China
 ²General Atomics, San Diego, CA, USA
 ³ITER Organization, CS 90 046, 13067, St. Paul Lez Durance Cedex, France
 ⁴CEA, IRFM, F-13108 Saint Paul-lez-Durance, France
 ⁵Princeton Plasma Physics Laboratory, Princeton, NJ, USA

*E-mail: <u>xz gong@ipp.ac.cn</u>

2nd Technical Meeting on Long-Pulse Operation of Fusion Devices Oct. 17 2024, IAEA Headquarters Vienna

Outline

Extension of fusion performance towards SSO

- Physics understanding in high-β_p steady-state plasma
 - Enhanced H&CD efficiency at high density
 - Improve confinement with zero torque injection
 - High-Z impurity and heat flux control
- Long Pulse H-mode Plasmas on Full Metal Wall in Support of ITER NRP
- Future plan and summary

Fully Non-inductive High-β_P Scenarios Extension to High Density Regime with Good Confinement

X. Gong / 2nd IAEA TM on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters / Vienna

ASIPP

Experiments Show Improved Confinement when Extending to High-β_P Regime

ASIPP

Extension of fusion performance towards SSO

Physics understanding in high-β_p steady-state plasma

- Enhanced H&CD efficiency at high density
- Improve confinement with zero torque injection
- High-Z impurity and heat flux control

Long Pulse H-mode Plasmas on Full Metal Wall in Support of ITER NRP

Future plan and summary

X. Gong 92ng Technical Meeting on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters,

Improved CD Efficiency due to High Core T_e and Synergy Effect of ECCD and LHCD

Improved RF current efficiency ~0.87x10¹⁹A/W/m²

– CD efficiency increases with $< T_e >$

- Synergy factor as $F_{syn} = \Delta I / I_{EC} \sim 1.64$, due to velocity space diffusions between ECCD and LHCD

- Fully non-inductive CD with $f_{RF}{\sim}70\%$ and $f_{BS}{\sim}30\%$ at $\beta_{P}{\sim}1.5$
 - Monotonic current profile with $q_{(0)}>1$
 - ECCD is on-axis and LHCD deposits at ρ <0.4 due to good accessibility
- Similar CD proportion as shown in ITER 10MA Q≥5 SSO with f_{CD} ~66%, f_{BS} ~34%

X. Gong / 2nd IAEA TM on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters / Vienna

Improved CD Efficiency due to High Core T_e and Synergy Effect of ECCD and LHCD

Improved RF current efficiency ~0.87x10¹⁹A/W/m²

- CD efficiency increases with $< T_e >$
- Synergy factor as $F_{syn} = \Delta I / I_{EC} \sim 1.64$, due to velocity space diffusions between ECCD and LHCD
- Fully non-inductive CD with $f_{RF} \sim 70\%$ and $f_{BS} \sim 30\%$ at $\beta_P \sim 1.5$
 - Monotonic current profile with $q_{(0)}>1$
 - ECCD is on-axis and LHCD deposits at ρ <0.4 due to good accessibility
- Similar CD proportion as shown in ITER 10MA Q25 SSO with f_{CD} ~66%, f_{BS} ~34%

Higher Te can Reduce Power Loss of LH Waves in Edge

- Higher electron temperature can shorten the N₁₁ spectral gap for Landau damping of LH waves
- Fewer passes between plasma edge and center are needed to bridge the spectral gap, leading to less LH power loss in the SOL by collisional damping

C23

ASIPP

X. Gong / 2nd IAEA TM on Long-Pulse Operation of Fusion Devices / Oct. 20247 TAE

Saturated m/n=1/1 Mode Sustained High T_e Plasma with Improved Confinement

- ETG turbulence can be reduced by m/n=1/1 mode
 - 1/1 mode can generate negative current
- Increase q(0)>1 with sawtooth free, helping to form weak magnetic shear
- The self-regulation system to sustain SS LPO
 - The interplay among negative current, kink mode, turbulence
 Li, PRL 2022

Reduced Transport in Electron Energy Channel Consistent with T_e-ITB Formation

- Electron transport reduced in ρ<0.4
 - Consistent with improved confinement

- Linear analysis by TGLF
 - TEM modes dominate at ITB
 - ETG modes dominate outside ITB

Transport Modeling Points to Strong Effect of Shafranov Shift

- Energy transport insensitive to E×B shear flow
 - Electrostatic TGLF-SAT0, with fixed experimental n_e
- Electron turbulent energy fluxes decreases with high- β_p
 - Consistent with turbulence measurements
- High Shafranov shift (α -stabilization) helps to improve energy confinement
 - Shafranov shift ~ $\beta_P \sim \alpha \sim d\beta_P/dr$

11

- As α increases, unstable eigenfunction becomes narrower in θ

X. Gong / 2nd IAEA TM on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters / Vienna

Jinping Qian, POP 2021 Kotschenreuther, IAEA 2020 Juan Huang, PPCF 2020

Broad Current Profile by Early EC Heating and off-axis LHCD at High Density Sustained Fully Non-inductive High- β_P Scenarios

- Lower li obtained by early EC-heating during lp ramp-up
- Current profile becomes broader with EC deposition more off-axis
- Broader current profile obtained at high density with more off-axis LHCD
 - $n_e \uparrow \rightarrow \eta_{CD} \downarrow; \text{ broad } j(r) + \text{weak shear } \rightarrow \text{ confinement} \uparrow + \beta_P \uparrow \rightarrow f_{bs} \uparrow$

A. M. Garofalo NF 2017

Higher LHW Frequency and Lower Recycling Wall Allowing High LHCD Efficiency at High Density

- LHCD efficiency drops faster than 1/n_e
- Higher LHW frequency has higher CD efficiency
 - PI growth rate smaller with higher LH source frequency
- Lower recycling allows higher CD efficiency
 - Lower edge neutral density improve accessibility
 - Higher temperature reduce PI intensity

X. Gong / 2nd IAEA TM on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Heading of the solution Oct. 2024 / IAEA H

Miaohui Li, NF 2022

Cez

ASIPP

High Density Regime Helps to Improve Bootstrap Current Fraction in High-β_P Scenarios

- Fully non-inductive high- β_{P} scenarios extension to high density regime
 - High $\nabla n \rightarrow$ turbulence transitions from ∇T driven to ∇n driven
 - High $\beta_P \rightarrow$ narrow eigenfuction, couples poorly to ∇n driven mode

Well Controlled High-Z Impurity in High-B_P Plasmas

- Small ELMs and high density (n_{GW}~0.8) reduced W-sputtering
- Avoid high-Z impurity accumulation by on-axis ECH
 - W in good control within low level $(C_w \sim 0.3 \times 10^{-5})$
- Modeling shows strong diffusion of TEM in the central region ρ <0.45

Mitigation of IC-Fast Ion Loading on PFCs by Optimizing H/D Ratio

ICRF H-monitory heating on EAST:

- IC ~ 1.5-2.5MW, E_{fastions} >150keV, E_{loss} >100keV
- Higher Density: E_{fastions} ~50keV-150keV
- Higher n_H/n_e: E_{fastions} ~50keV-100keV

Reduced temperature on main/guard limiters by active control of H/H+D (~8%)

X. Gong / 2nd IAEA TM on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters / Vienna

Outline

- Extension of fusion performance towards SSO
- **D** Physics understanding in high- β_p steady-state plasma
 - Enhanced H&CD efficiency at high density
 - Improve confinement with zero torque injection
 - High-Z impurity and heat flux control

Long Pulse H-mode Plasmas on Full Metal Wall in Support of ITER NRP

Future plan and summary

X. Gong 92ng Technical Meeting on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters

Established a Joint EAST/ITER Team to Develop Detailed Experimental Plans on EAST to Address the ITER New Baseline Issues

1. Boronization studies on optimization, characterization of retained fuel and efficiency of removal

2. Limiter start up on W and L-mode ramp-up with low Z (boronized) and high-Z (far away from boronization) wall and mitigation of W accumulation related issues

3. Impact of low Z (boronized) and high Z (far away from boronization) wall on H-mode operational space with small ELMs, RMP-ELMs and (for reference) with Type I ELMs.

The New ITER Baseline Brings New Challenges which Requires More R&D and Support from Current Experiments

Discussions on EAST experiments

Impact of Iow Z (boronized) and high Z (far away from boronization) wall on H-mode operational space with small ELMs, RMP-ELMs and (for reference) with Type I ELMs Discussion on possible EAST experiments in support of ITER re-baseline: 10/11/2023

IDM UID: 9HB5E9

R. A. Pitts, T. Wauters

Covering:

Boronization and limiter start-up/ramp-up

X. Gong / 2nd IAEA TM on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters / Vienna

1/8

Dedicated EAST Mini-Campaign (Dec. 2023 – Jan 2024) was Performed in Support of New ITER Baseline

- EAST experiments with full W-limiter and W-divertors
 - Boronization studies (T. Wauters)
 - H-mode operation with W wall (A. Loarte)
 - W Limiter start-up experiments (R.A. Pitts)

X. Gong / 2nd Technical Meeting on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters / Vienna

5

Development of High-ß Scenario by RF Heating with Boronization

- High-β plasmas by RF heating at high Bt~2.5T
 - $-P_{LHW}$ ~2.3MW, P_{EC} ~2.4MW, P_{IC} ~2.8MW
 - $-n_{Gr}$ ~0.4-0.8, β_{N} ~1.8, H_{98y2} ~ 1.2, q_{95} ~6.0
- Broader current profile during ICRF heating
 - $-q_{(0)}$ >1, sawtooth discharge

The Impact of Wall Conditions on Energy Confinement

• Energy confinement with Boron-wall is reduced by ~10-15%, compared with Li-coating

Demonstration Long Pulse H-mode Plasmas on Full Metal Wall in Support of ITER New Research Plan

- Stationary ~100s H-mode plasmas achieved $n_e \sim 4.3 / H_{98v,2} \sim 1.1$, $P_{EC} \sim 3.0 MW$, $P_{LH} \sim 2.2 MW$
- Optimization of the H&CD coupling
 - Separatrix W-limiter gap~6cm and using gas puffing
- Well controlled high Z impurity
 - Small ELMs and high density reduced W-sputtering
 - Avoid impurity accumulation by on-axis ECH

ASIPP

X. Gong / 2nd Technical Meeting on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters / Vienna

Outline

Extension of fusion performance towards SSO

- **D** Physics understanding in high- β_p steady-state plasma
 - Enhanced H&CD efficiency at high density
 - Improve confinement with zero torque injection
 - High-Z impurity and heat flux control

Long Pulse H-mode Plasmas on Full Metal Wall in Support of ITER NRP

Future plan and summary

X. Gong 92ng Technical Meeting on Long-Pulse Operation of Fusion Devices /Oct. 2024 / IAEA Headquarters /

Summary

- Significant progress ~100s SS high- β_p plasmas by RF-only achieved on EAST
- Near-term plan with upgrade of inner components/H&CD systems
 - Develop high β_p scenario with ITER shaping (LSN) at moderate q_{95} ~5-6 in low aspect ratio
 - Develop high β_p scenario in ITER-like heating scheme by enhancing H&CD capabilities
 - Investigate the impact of wall condition on scenario development
 - Extend plasma performance and improve confinement by broaden j(r) with q_{min}>2 aiming at NCS or weak shear to form ITB in all channels

Thank You For Your Attention Your Suggestions and Comments Will Be Appreciated

