cea irfm

Operating the WEST Superconducting Long Pulse Tokamak

V. Lamaison, E. Corbel, A. Ekedahl, L. Gargiulo, S. Hacquin, M. Houry, P. Moreau, L. Toulouse and the WEST Team

OUTLINE

- **1. Introduction on WEST Superconducting Tokamak & Ancillary Systems**
- **2. WEST Achievements, Operation, Availability since December 2022**
- 3. Two Highlights specific to Long Pulse Operation Tokamak Infrared protection for plasma facing components Actively Cooled Components & Water Leaks management

Introduction on WEST Superconducting Tokamak and Ancillary Systems

WEST: a MA class superconducting tokamak

- Full tungsten actively cooled environment
- □ Flexible magnetic configuration (LSN, USN, DN)
- □ Large current drive capability
- □ Long pulse operation → 1000 s

I _p (q ₉₅ ~2.5)	1.0 MA
B_{φ}	3.7 T
R	2.5 m
а	0.5 m
А	5-6
Мах к	1.35
δ	Up to 0.5
V _p	15 m ³
n _{GW} (1MA)	1.5 10 ²⁰ m ⁻³
P _{ICRH}	9 MW
P _{LHCD}	7 MW
P _{ECRH}	3 MW (2024 - 2025)
T _{flattop}	1000 s

WEST: a Tungsten divertor, superconducting & actively cooled tokamak

Manna WEST in September 2024 **Upper divertor** W (15µm)/CuCrZr ITER divertor cassette anananananananananananananan **VDE/Ripple** protection W (15µm)/CuCrZr Antennae protections **Inner bumpers** Vessel W (12µm)/CFC **Bulk W** protection **Outer bumper** panels Bulk W & W **Stainless** coating steel mann TERRET CERTIFIC a lette he **ITER like Baffle** PFU W bulk W (15µm)/CuCrZr Phase 1 (Dec 2016 – Jan. 2021) Phase 2 (≥2021) **ITER-like WEST divertor** Actively cooled + W coated inertial divertor **Completely actively cooled ITER grade** elements divertor prototypes and baffles <u>cea</u> irfm

WEST Ancillary Systems

- Magnetic system
 - 18 TF Superconducting NbTi magnets (160 tons), Thermal Shields (20 tons)
 - 9 CS/PF water cooled Copper Coils
 - Upper and Lower water cooled Copper Divertor Coils
- **Cryoplant to cool down magnets**
 - 3kW @ 4.5K (1/3 of JT-60SA cryogenic system)
 - 3.5 tons of helium inventory
 - Gas helium (200 bar) and Liquid helium storage
- Water cooling system to remove heat loads from Plasma Facing Components (PFC) and continuous systems
 - 15MW (upgrade of additional 5MW for 1000s plasma)
 - Dedicated high pressure and temperature water loop
- Electrical Power Supplies
 - 400kV: Pulsed power Electrical Network
 - 2 x 15kV: Steady state Electrical Network

Heating systems

- Lower Hybrid: 7MW, 1000s
- ICRH: 9MW, 30s; 3MW, 1000s
- irfm ECRH: 3MW, 1000s

Conductor (NbTi, Cu, CuNi) 1.8 K. 1.1 bar

WEST Achievements, Operation, Availability since December 2022

Main achievements since December 2022

C6&C7 plasma campaigns

Dec. 2022-April 2023

- 3.5 months
- 5h30 plasma cumulated duration
- 44GJ injected energy
- Max Lower hybrid 5MW, max ICRH 4MW
- 100s plasma pulses

C8&C9 plasma campaigns

Dec. 2023-April 2024

- 4 months
- 5h45 plasma cumulated duration
- 38GJ injected energy
- Max Lower hybrid 5.8MW, max ICRH 4.5MW
- Plasma pulse > 6min achieved

Plasma pulses

	Plasma pulses	Total	Failed	Commissioning plasmas	Physics program
	C6&C7	1420	13%	15%	72%
fm	C8&C9	1478	9%	14%	77%

WEST Operation

Yearly operation target

- 2 campaigns of ~3 months
- Shutdown for maintenance and evolutions of 4.5-5 months
- Commissioning of 1 month before campaign

Week operation

- Monday dedicated to Maintenance/Boronisation
- 4 operation days in two shifts
 (2 days 8:45am-6:00 pm + 2 days 8:45am-9:00pm)

2023								2024															
Jan	Feb	Mar	Apr	· May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
S6		C7					S7				C 8	S8		C9				S	9			C10	

WEST availability > 70% since 2019 during plasma campaigns

Commissioning before campaign

After Shutdown, commissioning duration is about 1 month:

- **Cool-down of the magnets**
- Helium leak detection on vaccum vessel
- Water Cooling loop filling (30m³), High-pressure leak test, Chemical Treatment of water
- Baking at [200°C, 35bar] of the vaccum vessel

During Campaign: Systems availability

All unavailability are reported in a dedicated database during plasma campaign

Operation downtimes: Time contributions (%) of systems

- Distribution of operation downtimes varies from one campaign to another
- Analysis of operation downtimes: identification of more frequent failures or delays
- irfm

 \rightarrow Completion of maintenance plan

Two Highlights specific to Long Pulse Operation Tokamak

Real time protection implemented for Long pulse operation

IR diagnostics (7 endoscopes) installed on the WEST tokamak covering 52% (45m²) of the 1^st wall, 85% of the lower divertor IR monitors the surface temperature of critical PFCs in order to prevent damages during long pulses : **definition of Regions Of Interest and associated temperature threshold**

Two-stage protection

- Limit avoidance: Real time feedback control acting in a proportional way on the injected power → only 3% of the feedback controls cross the threshold and lead to triggering an interlock (soft plasma landing)
- Interlock: Identification temperature threshold and deliver an alarm leading to plasma soft landing
- First demonstration of inverse IR Neural Network (NN) to remove reflections and determine accurate surface temperature from IR images
- Additional diagnostics
- VUV (Vacuum Ultra Violet) on cooper wavelength: Real time feedback control acting in a proportional way on the injected power
- Calorimetry diagnostic (~200 sensors & flow meters implemented) with automatic Data processing tool → Thermal Energy

Spatial resolutions from 2mm/px to 0.1mm/px temperature uncertainty of 6% at 1000°C

Actively Cooled Components & Water Leaks management

Validation of active cooled components before integration in the vacuum vessel

5

1

0

202202202

ightarrow Specific test: Pressure (45 bars) and temperature (200°C) cycling with helium tightness test

Water leak can occur and involve impact on operation

Tore Supra (24 years): 19 in-vessel water leaks during plasma campaign \rightarrow ~33 days lost

WEST (2016-) 7 events 1 week of plasma campaign lost 2

- Leak localisation by presurization depresurization of water circuits
- Leak detection by sniffing inside the vacuum vessel
- Leak detection by glow decharge (in progress)

Leak localization faster and eased by isolation of hydraulic sub-circuits

14

Water leak on hydraulic connexion

→ Improvement of water circuits configuration with the implementation of sets of valves and bottom drains

Summary & Perspectives

- WEST is a superconducting long pulse tokamak that involves complex systems (superconducting magnets, cryogenic system, water cooling system, heating systems, power supplies ...)
- WEST achievements
 - Plasma duration of 364s
 - The WEST availability is > 70% since 2019
 - > 70% of plasma rated as meeting physics program requirements
 - Operation downtimes monitoring is essential to complete the maintenance plan
- IR Real time protection
 - 52% of the first wall of the vacuum vessel, 85% of the lower divertor monitored by IR diagnostic
 - 97% efficiency of real time feedback control for real time protection
- Water leak management detection to improve reactivity
 - Typical duration (localization, repair) of an in-vessel water leak: 5 weeks
 - Water network configuration: leak localization faster and eased by isolation of hydraulic sub-circuits

New capabilities for	:	Bulk W-tiles (instead of W-coated & BN) on inner and outer start-up limiters ECRH, 1 MW available end 2024, 3 MW in 2025	
	next campaigns	•	New diagnostics (Thomson scattering, collector probes,)
ł			Acquisition system compatible with long pulse > 1000s (large flow rate & large amount of data)

Thank you for your attention