

Towards long-pulse and continuous ò. **positive-ion-based neutral beam injection**

C. Hopf, B. Heinemann, G. Orozco, T. Haertl, C. Bachmann, T. Franke, C. Gliss, T. Fellinger

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via *the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions* expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the *European Commission. Neither the European Union nor the European Commission can be held responsible for them.*

Outline

- Why long-pulse positive ion based (P-) NBI?
- Present status of P-NBI experience and technology
- VNS NBI as case study
	- Transmission
	- Everything related to gas reionization, feed gas, pumping
	- Energy ("wall-plug") efficiency
	- Active cooling
	- Residual ion dump erosion
	- Remote maintenance philosophy
- Conclusion

Example 1: EURO*fusion***'s Volumetric Neutron Source**

- Small tokamak with beam-driven D–T fusion.
- So far: feasibility study concluded.
- Main mission: test functional breeding blankets under reactorrelevant neutron fluxes and fluences.
- Neutral beam injection (NBI) provides
	- most of the fusion rate
	- fully non-inductive current drive for steady state.

VNS requires 42 MW of continuous 120 keV deuterium NBI. At 120 keV (only) positive-ion-based NBI can be used. Advantage: No Cs, 10 higher current density, good

reliability record especially with RF ion sources.

Example 2: Realta's High-Field-Mirror BEAM

C.B. Forest *et al.*, J. Plasma Phys. 90 (2024) 975900101

Present status of P-NBI experience and technology

**High heat flux component test facility that uses the beam from a NBI ion source that is smaller than, but technologically similar to the AUG RF ion sources.

Transmission

- Small device, but neutron shielding does not scale \rightarrow long beamline.
- Beamlet divergence $\langle v_\perp \rangle / v_\parallel$ is larger for slower beams (~ 0.7° for 120 keV D).
- TF and PF coils as well as NBCD requirement for tangential injection restrict duct cross section.
- → **87 % geometric transmission**

Reionization

- 120 keV D^0 (and 60/40 keV energy fractions) are around the maximum of the ionization cross section!
- 4.4 % beam loss by ionization per every 10⁻⁵ mbar background gas.
- ➢ **For < 10 % reionization losses average duct pressure** needs to be $< 2 \times 10^{-5}$ mbar!

Required feed gas flow

-
- Neutralisation via charge exchange $D^+ + D_2 \rightarrow D^0 + D_2^+$
- Target thickness required for 50 % neutralisation: 8.5×10^{19} m⁻²
- Achieved with 25 mbar L/s per source $($ 45 % converted to beam) in 4 m long neutraliser $=$ twice the length of AUG neutralisers.
- Total feed gas flow 100 mbar $L/s =$ half of AUG NBI

Pumping

Differential pumping

Box exit pressure < 2 10–5 mbar achievable with total pumping speed of 2 10⁶ L/s → **feasible.**

Cyclic operation and pump regeneration

- Conservative explosion safety limit: in case of air leak with sudden release of adsorbed hydrogen from cryopumps **hydrogen partial pressure must remain below 16 mbar** = 40 % of explosion limit.
- 70 m³ box volume and 100 mbar L/s feed gas flow → **max. 3.1 h operation.**
- **Concept: 4 injectors, cyclically 3 operating, 1 regenerating**
- $\cdot \rightarrow$ 1 h for cryopump regeneration
- NBI cryopumps constitute one of the bigger T inventories.

Efficiency

Option: Residual Ion Energy Recovery

Reclaiming part of the kinetic power of the residual ions by electrostatic deceleration could improve the wall plug efficiency \rightarrow to be studied in detail.

Active cooling

 Ω

- Active cooling required for every component that sees beam or source plasma power.
- Solutions exist; have to be adapted.

Sputtering

 10^{-4} 10^2 10^3 eV angle of incidence (°), $0^\circ = \perp$

> W. Eckstein, "Sputtering Yields" in Behrisch & Eckstein, "Sputtering by particle bombardment", Springer, 2007

 10^{3}

60

• Only standardized tasks; replacement of entire components, not replacement/repair of individual parts.

- In AMF:
-

Redundancy

- Injectors moved between NB cell and remotely located active maintenance facility (AMF) on a rail and turntable system.
- short.
- In case of scheduled or non-scheduled maintenance of an NBI injector: replace entire injector with a spare to keep VNS downtime

• HV conditioning in AMF; no calorimeter in injector.

- **General remote maintenance philosophy**
- VNS can run with less NBI power at reduced plasma current and fusion power/neutron flux.

Remote maintenance and redundancy

Conclusions

- Reliable operation of P-NBI systems with RF ion sources has been demonstrated over hundreds of thousands of cycles and > 1 month of cumulative operation.
- The main challenges are
	- Uninterrupted NBI despite need for cyclic regeneration of getter pumps.
	- Keeping reionization at an acceptable level.
	- Unprecedented operation times \rightarrow Erosion of residual ion dump targets and other components.
	- Remote maintenance concept & concrete RM-compatible design.
- All required technical solutions for continuously operated P-NBI do in principle exist, but need to be tested over meaningful times. \rightarrow Long-pulse test stand, prototype beamline
- Not addressed in this talk:
	- Effect of neutron irradiation on NBI components, e.g. permanent magnets, insulators ...
	- Efficiency improvement through energy recovery

P-NBI vs. N-NBI

C. Hopf *et al.*, Nucl. Fusion **61** (2021) 106032

- P-NBI with RF sources uses neither filaments nor Cs and is practically maintenance-free and very reproducible.
- P-NBI extracts 10 times more current density than N-NBI.
- P-NBI is the only reasonable choice below 300 keV D because of size.

VNS tritium inventories

