Lower Hybrid current drive long pulse operation state of the art on WEST

cea irfm

X. Regal-Mezin, J.-M. Bernard, E. Bertrand,
P. Bienvenu, J. Cazabonne, X. Courtois, L. Delpech,
A. Ekedahl, and the WEST team

<u>cea</u>

1. The LHCD system of WEST: a key system for long pulse operation

2. Optimization of the LHCD system for long pulse operation

3. Conclusion

1. The LHCD system of WEST: a key system for long pulse operation

2. Optimization of the LHCD system for long pulse operation

3. Conclusion

IAEA Second Technical Meeting on Long-Pulse Operation of Fusion Devices

The LHCD system of WEST: a key system for high power and long pulse operation Pulse 60203

- World-leading class Lower Hybrid Current Drive (LHCD) system installed on WEST :
 - Maximum LH power currently installed on a tokamak (9 MW/CW @generator)
- Key system for:
 - High fluence experiments and characterizations of ITER-grade plasma facing units (divertor tungsten tiles, etc)
 - WEST record :
 - Maximum coupled LH power 5.8 MW
 - Long pulse operation:
 - WEST record :
 - 364 s with LHCD
 - 1.15 GJ
 - 3.2 MW injected

The LHCD system of WEST: a key system for long pulse operation

3-dB splitte

Rectangular Waveguides (x16)

2 launchers 7 MW/1000 s Each powered by 8 klystrons

LHCD klystrons plant

6 klystrons

- Standard WR284 waveguides
 - Actively cooled (25-30 m)
 - N2 pressurized @2 bar

▶ 16 klystrons @ 3.7 GHz with 620 kW/1000 s power capability each for plasma operation

WEST vacuum vessel

- Strong expertise of long pulses operations :
 - System designed to support power for 1000 s
 - Fully water cooled
 - Real time **Cooper Impurity** and **IR monitoring interlocks** with power control loopback
 - Launchers position adjustable (~100 mm range) regards plasma boundary position

Still challenging! What can be improved:

To reach high-power long pulse operation up to 1000 s?

To better monitor the LH system and to further improve its reliability?

Interlocks for the safety of the LHCD system

- Real-time protection of in-vessel components, including LHCD launchers:
 - Feedback controlled LH power
 - Threshold on:
 - Copper impurity content from spectroscopy
 - Temperature on predefined Regions of Interest (ROI) from IR camera
 - New safety system for the LHCD launchers:
 - Automatic IR-based arc detection algorithm implemented for the next campaign, trained on previous campaigns

LHCD Power plant protection :

- Real-time control of the injected power interlock ⇒ threshold on reflected power
 - @ launcher level
 - @ klystron level
- Arcs, vacuum, water flow rate, temps, filaments, focusing coils,... (PLCs for slow response security and electronic cards based on EPLD for fast response securities).

Interlocks for the safety of the LHCD system

Example of real-time protection of the LH launcher

(connected to the PCS) triggered by IR measurement

Reduced power to ensure T_{Grill} below threshold

IR view of the launcher grill

<u>cea</u>

1. The LHCD system of WEST: a key system for long pulse operation

2. Optimization of the LHCD system for long pulse operation

3. Conclusion

Optimization of the LHCD system for long pulse operation

□ 3 main focusing points

Maintain full performance of the klystrons

□ Maintenance during WEST shutdown:

 \Rightarrow Regular RF calibrations, tests of klystrons on matched load (pulse duration up to 500 s)

□ RF switch allow selecting the klystron operating mode:

- ► *Tir sur plasma* : power is directed to the Tokamak
- Tir sur charge : power is directed to an actively cooled load (250 l/min) - only one klystron is tested at a time in this mode
- Load cooling circuit is equipped for calorimetric power measurements (flowmeter, load inlet and outlet temperatures)
 - ⇒ Characteristic curve for each klystron:

Klystron SN103101

IAEA Second Technical Meeting on Long-Pulse Operation of Fusion Devices

Optimize the cooling water system

□ Challenges to go to 1000 s

<u>cea</u>

- □ Cooling water loop optimization:
 - Minimize the dissipated power for each klystron:
 - \Rightarrow minimize cathode voltage of klystron at the lowest value possible
 - with respect to the max power requested

Example : 4 MW request of LH power

 \Rightarrow 250 kW x 16 klystrons

Power dissipated in water loop (per klystron):

- ∀k = 65 kV → 1 MW
- Vk = 70 kV → 1,2 MW
- Vk = 73 kV → 1,4 MW

→ Saving up to 6.4 MW !

Improve the klystron plant reliability

New klystron plant data acquisition system (288 channel @1KHz)

□ In the control room:

- Monitoring klystron performance
- Monitoring klystron safety signals
- Better post-pulse analysis

□ Between experimental campaigns:

- Build a complete multi-parameter database for long-term klystron proctoring
- In the future: AI database analysis for klystron failure prediction

Examples:

- Cavity temperature → Beam focus issue
- Ionic pump current → vacuum quality /tube integrity
- RF input power → Gain evolution
- Collector temperature → Calorimetric measurement

																	-
x :136.964										- 70	o 7-lao _x	39.823		1			- 26.0 - 26.
- V11 - Duienpra incidente Di (VAV)																	
- K11 - Puissance d'entrée Pe (W)											6 70	www.	Мар-т				
												Valet	KLO T	Ċrve (°Ċ)	1 X	nki u	
											0		Nom	valeurs a T =	157.664	A AMARA	
ليستعم											4 50	1 K11-1	Cuve (*C) 2	8.87			
											0	2 K12 - 1	Cuve (°C) 2	!5.7			
			3 K13 - T Cuve (*C) 24.72								4.72						
provenue											0 - 27 30	4 K14 - 1	Cuve (°C) 2	4.54			
												1		THE REAL PROPERTY.		-	
لسم											0 1 ⁻ 20						
		Coptions					and strategieses	ene und								-	×
		K11	K12	K13	K14	K21	K22	K23	K24	K31	K32	K33	K34	K41	K42	K43	K44
		Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
		Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr
x :165.239		Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe	Pe
		V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X	V-Phase-X
K11 - Tension cathode - Vk (kV)		V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att	V-att
		V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1	V-deph-1
K11 - Elévation température corps sup	érieur - SEK (°C)	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2	V-deph-2
		Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk	Vk
		T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col	T-col
		Ipi	lpi	lpi	lpi	lpi	lpi	lpi	lpi	lpi	lpi	lpi	lpi	lpi	lpi	lpi	lpi
		lk	lk	lk	lk	lk	lk	lk	lk	lk	lk	lk	lk	lk	lk	lk	lk
		T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf	T-Cav-inf
		T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup	T-Cav-sup
	1	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf	DT-Cav-inf
		DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup	DT-Cav-sup
		IS-Charge	15-Charge	15-Charge	15-Charge	15-Charge	IS-Charge	IS-Charge	IS-Charge	15-Charge	15-Charge	15-Charge	15-Charge	15-Charge	IS-Charge	IS-Charge	IS-Charge
		TCune	TCinia	Trune	Trune	Trune	TCinia	TCune	TCunie	TCance	TCunio	TCunie	TCinia	TCinia	Trune	TCunie	Trune

1. The LHCD system of WEST: a key system for long pulse operation

2. Optimization of the LHCD system for long pulse operation

3. Conclusion

IAEA Second Technical Meeting on Long-Pulse Operation of Fusion Devices

Conclusion

LHCD is a complex system requiring constant monitoring of klystrons and installation to ensure :

- performance, availability and reliability on plasma experiments
- Expertise and knowledge of the technical team
- □ Local acquisition system improvement will allow us to :
 - monitor in real-time the safety-relevant parameters of the 16 klystrons
 - Record automatically all klystrons parameters. The analysis of theses data should be helpful to anticipate and predict some issues or performances degradation of klystrons in the future.

□ System ready for the next campaign and for moving towards the 1000 s pulse. (Winter is coming : best condition for the water cooling loop efficiency with lower temperature outside ©!)

Thank you for your attention

The LHCD klystron plant

LHCD klystron plant :

- 16 Klystrons reparted in 4 modules equiped with :
 - HV solid state switch (open 100 kV/25 A in ~5 μs)
 - Dummy load 700 kW/CW
 - RF switch
- 4 HVPS 80 kV/100 A (32MW !)
- Dedicated cooling water loop
 - 27 MW exhausting capacity (@540 m³/h)

Klystron TH2103C :

- Frequency : 3,7GHz
- RF Gain > 50 dB
- Pmax RF: 700 kW/1000 s
- Efficiency < 40% (Pelec = 1.7 MW)

TH2103C klystrons: operating principle

Water (Out) High Frequency amplifier Collector Filament heating: electron emission Electron acceleration (between Vk - collector) Electron beam dissipation = Beam focusing (magnetic field - electromagnet) Ground HALES 1 MW (Pelec - PHF) around cavities) Gain Amplification HF > 50dB (cavity x 4) Electron beam dissipation = Efficiency ~40% **1,7 MW (Pelec)** Water (In) Performances TH2103C : RF output power = 350 kW **RF** outpower = 350 kW ► HF Frequency : 3,7GHz **RF** amplifier cavities Pmax HF: 700 kW / 1000 seconds ~ 900 ch... RF drive power (3W) @3,7GHz Vk=-74 kV, Ik=23A Pelec = 1,7 MWGun

LHCD System power plant

- Sub-assemblies required for klystron operation :
- Power supplies (coils, filament)
- High Voltage Fast switch HT (toff < 3µs)
- HF racks: 3.7GHz source, regulation, preamplification
- Fast security (based on EPLD)
- Sensors (PHF, t°, flow, U, I,...), arcs detectors, conditioners
- PLCs

Racks for one module of 4 klystrons

Data acquisition for a test on

Tests on matched load

► Klystron gain curves:

- changes compared with previous years
- determining the maximum output power available on plasma

K24 le 16 décembre 2021 SN103107

Tests on matched load

SCI

calibration: power setpoints vs. actual power measured by calorimetry.

- Update calibration coefficients :
 - in DHYB diagnostics (for plasma mode)
 In PLCs source code (for matched load mode)

On plasma (HF measurements and setpoints sent from DHYB) :

- The klystron output power (blue) corresponds to the setpoint sent by Plasma Control System (red).
 - in green: power coupled to plasma -10% losses (lines and reflected power).

