

Towards long pulse operation of N-NBI ion sources

C. Wimmer, M. Barnes, A. Döring, M. Fröschle, N. den Harder, A. Heiler, D. Mussini, A. Navarro, R. Riedl, D. Wünderlich, D. Yordanov and U. Fantz

Max-Planck-Institut für Plasmaphysik (IPP), Boltzmannstr. 2, 85748 Garching, Germany

EUROfusion

 \circ

 \circ \circ \circ $0⁰$ $0¹$

> This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via *the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions* expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the *European Commission. Neither the European Union nor the European Commission can be held responsible for them.*

Neutral Beam Injectors for ITER

Heating neutral beam (HNB) injectors:

- 2 foreseen at the beginning
- 16.5 MW heating power each (fusion plasma heating & current drive)
- 1 MeV D, 870 keV H \rightarrow H source required (10 kV extraction + 5 x 200 kV acceleration stages)

First RF ion source based N-NBI in the world!

Neutral Beam Injectors for ITER

Challenging requirements for the beam source:

Focus of this talk: ion source

Development program towards ITER HNB ion source

Challenges for long-pulse operation

The RF source operates technically reliable! (prototype source since late 1990s, ELISE since 2014)

Production of negative ions:

Surface conversion of H, H_x^+ on low work-function surfaces: Cs is continuously evaporated into source

Surface work function (WF):

- WF diagnostic indicates surface work function of 1.2-1.4 eV: probably Cesium oxide formation in non UHV-conditions
- Such low work function can hardly be maintained on a large area during plasma operation!

Co-extracted electrons limit source performance

Co-extracted electrons increase in long pulses

- Electrons bent onto extraction grid
- Created heat load limits tolerable amount
- Asymmetry due do vertical plasma drifts (caused by horizontal magnetic filter field)

Degradation of Cs conditions is biggest issue for bringing H- sources into a steady state

Measures for reducing, stabilizing and/or symmetrizing co-extracted electrons required! 0 100 200 300 400 500 600

Operational scenarios developed at ELISE

Key points for reducing, symmetrizing and stabilizing co-extracted electrons:

- Caesium conditioning
- Electrostatic potentials
- Magnetic field

Direct impact on plasma electrons and effect on plasma drift \Rightarrow vertical plasma symmetry

- Vertical metal tubes traversing the plasma volume
- Affect electrostatic potential
- Follow-up to set of (larger) rods used during initial experiments

W. Kraus et al., *Rev. Sci. Instrum*. 89, **2018**, 052102 D. Wünderlich et al., *J. Phys.: Conf. Ser.* 2743, **2024**, 012026

Operational scenarios for long pulses in hydrogen

Operational scenarios for long pulses in hydrogen

RF power at ELISE limited to 75 kW/driver. The ITER NBI system has 100 kW/driver!

Steady state in reach for long hydrogen pulses!

Challenges in deuterium

Pulses decondition much more in deuterium (& j^e generally higher)!

As result: deuterium performance at ELISE is far from ITER requirements (j_{ex} = 286 A/m² for 1 h)

Modeling Cs dynamics

Standard Cs scenario:

- Steady evaporation of Cs from oven into ion source (typ. 1–5 mg/h)
- Redistribution of Cs during plasma pulses: large fraction of Cs ionized (70%), limited flux reaching positively biased PG

CsFlow3D: models Cs transport in ion source (plasma & vacuum phases)

- Strong decrease of Cs flux onto plasma grid during long pulses (depletion of Cs reservoirs)
- Direct evaporation of Cs close to plasma grid could stabilize Cs flux

A. Mimo et al., *AIP Conf. Proc.* 2052, **2018**, 040009

Challenges in deuterium: Cs shower concept

Cs shower at BATMAN Upgrade:

- Additional evaporation of Cs close to PG, only during plasma pulses
- 4 mm \emptyset tube containing 2 x 42 orifices (0.5 mm \emptyset), vertical spacing varies from 10 mm (top) to 5 mm (bottom) to counteract Cs supply only from upper side
- Tube ohmically heated to 300 °C
- Magnetic valve at Cs reservoir allows quickly turning on/off Cs evaporation
- Higher Cs leakage to extraction system expected: problems with HV breakdowns?

Results with Cs shower in deuterium

With Cs shower:

- Initial e increase not suppressed, but good stabilization after 200 s at manageable level
- Pulse could have been run for longer (cw)
- No significant problems with HV breakdowns
- But: strong evaporation asymmetry requires huge evaporation rate!

For the first time: steady state reached in a long deuterium pulse!

Conclusion

RF H- /D- source:

- Operates technically reliable
- In principle capable of running continuously (RF plasma generation, RF coupling, high voltage for extraction and acceleration, cooling etc.)
- Main limit: deconditioning during long pulses
- **Stable long pulses in hydrogen at high performance** after optimizing the filter field and introducing additional biased surfaces
- **Deuterium is more problematic: strong deconditioning**
- **Possible solution found: direct evaporation of Cs onto the convertor surfaces**
- **We are on a good way bringing large negative hydrogen ion sources into a steady state!**
- Further technology aspects: see following talk by Ch. Hopf