

Second Technical Meeting on Long-Pulse Operation of Fusion Devices *IAEA Headquarters, Vienna, Austria, 14th-18th October 2024*

Achievement of 102-second High-performance Long-pulse Discharge with Lower W-shaped Tungsten Divertor in KSTAR

Hyun-Seok KIM, Hyunsun HAN, YoungMu JEON, Youngho LEE, and the KSTAR team

***E-mail: hskim0618@kfe.re.kr**

Korea Institute of Fusion Energy (KFE), Daejeon, Republic of Korea

The advancement of long-pulse discharges in KSTAR aims to develop stable and sustainable highperformance scenarios and test the long-pulse operation capabilities of the device, identifying and resolving any issues that may arise during such operations from the points of view of both plasma physics and device engineering.

- The primary H&CD systems employed for long-pulse plasma operation at KSTAR are NBI and ECH. This enables not only the evaluation of the long-pulse capability of the H&CD systems but also the examination of NBI-driven fast ion behavior in a long-pulse discharge.
- † In particular, the achievement and continuation of a burning plasma state in ITER heavily relies on effectively preventing the transport of NBI-driven fast ions and fusion-generated α -particles. In this sense, KSTAR can contribute to studying fast ion behavior in conducting long-pulse plasma operations.
- During long-pulse plasma operation, KSTAR has experienced the following issues.
	- 1. Rapid temperature increase in PFCs due to beam-driven fast ion orbit loss and nonlinear signal drift in magnetic probes.
	- 2. Insufficient poloidal flux for discharges lasting more than \sim 10² seconds.
	- 3. Gradual degradation in plasma performance over a long-time scale to \sim 10³ τ_{F} .

KSTAR long-pulse approach began in 2015 with conducting a discharge characterized by high β_P **>3.0 and zero V_{loop}.**

 \clubsuit An example of KSTAR high-β_P discharge (f_{NI}~1.0, f_{BS}~0.5)

- High q_{95} (= 7-11) with high B_T
- Early NB injection at 0.4 s with 170 GHz ECH injection
- Sufficient heating power (=4.0-5.5 MW)
- \rightarrow Achieved high performance β_{p} >3.0, but degraded in time
- \rightarrow Zero loop voltage for \sim 10 seconds
- \rightarrow No ITB
- \rightarrow Since then, it has not been reproduced due to the changed **operating conditions, particularly the absence of 170 GHz ECH.**

KSTAR has faced difficulties in extending pulse length, over ~90 s, in recent years.

- High $β_p$ scenario adopted for highperformance long-pulse discharge in KSTAR.
	- V_{loop} decreases as $β_P$ increases.
	- TAE should be mitigated/suppressed by precise ECH injection to increase $β_{P}$.
- Plasma performance degradation over time makes it difficult to increase the pulse length.
	- Degradation up to \sim 20%, occurs after \sim 20 seconds.
	- Degradation is related to TAE activities.
	- Degradation increases V_{loop} and flux consumption, resulted in touching PF coil current limit.

 $*$ Arrows indicate "degradation in time" occurred up to \sim 40 s. * Hyun-Seok Kim, et. al., Nucl. Fusion 64 (2024) 016033

Finally, 102-second high-performance long-pulse discharge was achieved in 2023 KSTAR experimental campaign.

- V_{loop} ~70 mV, β_{p} ~2.5, β_{N} ~2.1, T_{e,core}>6.0 keV, T_{i,core}~2.5 keV, $\bar{n}_{\text{e,core}}$ ~3.0x10¹⁹ m⁻³.
	- Plasma parameters were similar to other long-pulse discharges.
- Performance maintained for \sim 70 s and its degradation was much minimized.
- Actively cooled W-shaped tungsten divertor was successfully operated.
- Real-time MD linear drift correction algorithm in PCS was successfully worked.

For longer pulse length (>102 s) discharge in KSTAR,

we have faced to conditions that limit longer pulse operation in KSTAR,

"Temperature of PFCs" and "Flux consumption of PF coils" along the existing long pulse discharges

Plasma Facing Component(PFC) Temperature

- **Carbon tiled PFCs : 600 °C limit and Tungsten monoblocks of lower divertors : 300 °C limit in thermocouples**
	- Control and reduction of fast ion loss to PFC \rightarrow alleviation of Poloidal Limiter temperature (T_{PL})

(1) Optimization of plasma shape and operation parameters to reduce fast ion bad orbit loss (2) Avoidance of MHDs (Alfven activities, Kink and Tearing modes) to reduce fast ion transport loss

Control and reduction of heat flux to PFC \rightarrow alleviation of Divertor temperature (T_{CD}, T_{OD}, T_{ID}) (1) Control of striking point location to avoid normal impact of heat flux on divertor plate

❖ Flux consumption

- **PF Coils : 15 kA/turn limit due to CS preloading and Apparent power limit < 140 MVA**
	- ‒ **Development of higher plasma performance, βp, with controlled MHDs as long as possible**

(PF coils almost reached their limits at $t_{pulse} < \sim 80$ s)

(1) Preventing performance degradation in long-time scale

(2) Reliable real-time EFIT operation by improving drifting signals in magnetics in long-time scale

Heat control of PFCs in KSTAR long-pulse discharge

Mitigation of magnetic signal drift in the long-time scale

Development of high β_P **discharge in KSTAR and identification of performance degradation in long-time scale**

Poloidal limiter overheats due to fast ion orbit loss. (1)

- Low I_p (400kA) long-pulse operation is **limited due to PL overheat due to fast ion hit on the PL.**
- **NuBDeC* code has been analyzed and produced the consistent result with the experiment.**

- **Ionized fast ions in the high field side hit the poloidal limiters and inboard divertor plate.**
- **If we assumed each beam power is 1MW (total 3MW), maximum loaded power on limiter side is estimated to ~6 MW/m2.**

***T. Rhee PoP26(2019)112504**

Poloidal limiter overheats due to fast ion orbit loss. (2) NBI source dependency

- Amount of fast ions lost to Poloidal Limiter varies depending on the beamlines of the NBI sources.
- NBI1-C contributed significantly to the fast ion orbit loss to the poloidal limiter.
	- fast ions ionized in the high-field side drift out and strike the PFCs as they rotate poloidally.
	- tangential radius of NBI1-C is 1.23 m, and its beamline touches the inboard limiter.
	- NBI1-C produces a more significant number of fast ions on the high-field side.
	- NBI1-C is unsuitable for long-pulse experiments where the rapid temperature increase in the poloidal limiter should be avoided.

(NBI1-A, NBI1-B, NBI1-C, NBI2-A, NBI2-B, and NBI2-C contributed ~19 %, ~1 %, ~38 %, ~9 %, ~17 %, and ~16 %.)

Poloidal limiter overheats due to fast ion orbit loss. (3) shape dependency

• Poloidal limiter experienced rapid temperature growth after \sim 50s.

PFCs' temperatures were able to be controlled with optimizing plasma shape and NBI heating scheme.

- To mitigate the temperature increase of the poloidal limiter (T_{p}) ,
- appropriate NBI sources are selectively utilized, which is no use of NBI1-C source
- plasma shape is controlled mainly by keeping R_{out} <~2.21m
- \cdot Increasing rate of T_u was reduced when NBI1-C was removed.
- NBI1-C beamline touches the inboard limiter.
- high shine-through power loss with low density plasma, \sim 2.0x10¹⁹ m⁻³.
- \cdot Increasing rate of T_{CD} was reduced by changing the position of the striking point.

Actively cooled tungsten divertors experienced temperature changes of less than 15 °C in 102-second high-performance long-pulse discharge.

• From a PFC temperature perspective, there are no issues even for operating for 300 seconds with the current injection power.

Heat control of PFCs in KSTAR long-pulse discharge

Mitigation of magnetic signal drift in the long-time scale

Development of high β_P **discharge in KSTAR and identification of performance degradation in long-time scale**

Magnetics were highly suffered from nonlinear drift issue under hot and long-pulse plasma and this impacted on change of unintentional plasma shape.

- Shape using drift corrected signals was much different from one using un-corrected signals, but real time EFIT did not know it.
- Especially, R_{out} should be controlled within \sim 2.21m to prevent from the increase of poloidal limiter temperature.
- ❖ Following solutions are considered,
	- ‒ Installation of thermal shielding block on magnetics
	- ‒ Development of real time nonlinear drift correction algorithm

Mitigation of nonlinear signal drift in magnetic probes by installation of thermal shielding protector $Z(m)$

- **❖** MP_z mainly shows nonlinear signal drift
	- Coil winding of MP_z is facing to the plasma
	- Thermal shielding protector effectively blocks plasma heat

We also confirmed that magnetic probes were experiencing accumulated signal drift in a day.

- There are many signals that shows the accumulated signal drift > 0.3mV/s in a day. (Our Drift Criterion <0.3mV/s)
	- \rightarrow The morning and afternoon shots derive different shape results in rtEFIT operation.
	- \rightarrow The next day, the drift level returns to the IDLE state. (Recovered)
	- \rightarrow 12 min. of shot interval could not fully recover the MPs' drift to its original state.
	- \rightarrow The degree of signal drift appears to be affected by the pulse length of discharge.

Pulse Length (s)

Length

 \overline{S}

Pulse

Shot count in the day Sep/07/21

20

30

10

Drift (mV/s)

Drift (mV/s)
 -0.2
 -0.2

 -0.4

 0.4

PCMP4P28F

During 102 seconds, there were changes in the plasma shape of less than 2 cm, and it is perceived that MD drift was significantly reduced by hardware and software improvements.

Heat control of PFCs in KSTAR long-pulse discharge

Mitigation of magnetic signal drift in the long-time scale

Development of high β_P discharge in KSTAR and identification of performance degradation in long-time scale

We also confirmed that magnetic probes were experiencing accumulated signal drift in a day.

↓ Lower V_{loop} scenario with high $β_P$

- Flux Consumption
	- $I_{PF} \leq 15$ kA/turn due to preload uncertainty of CS coils
	- Available flux during discharge \sim 11.9 Wb
	- Available flux during flat-top phase ~ 8.2 -9.3 Wb
	- $V_{loop} \leq 82-93$ mV for 100s pulse length
	- $V_{loop} \leq 27-31$ mV for 300s pulse length
- Generally, in our database,
	- V_{loop} reduces with β increase
	- Weak dependency btw. V_{loop} vs. P_{NBI} and B_T → Need to seek NBI efficiency ↑
- ... For robustness of lower V_{loop} scenario,
- Application of ECH helps
	- $-$ Increase I_{NBI} ∝ T_{e0}^{0.60}n_{eL}^{-1.04} with D_f∼0.0 m²/s
	- Mitigate/suppress TAEs ∝ D*^f* reduction

 \rightarrow KSTAR high $\beta_{\rm p}$ operation scenario

To achieve a high $β$ ^{*P*} **state at KSTAR**, **ECH/ECCD deposition must be accurately controlled to a narrow vicinity near the magnetic axis.**

- #18597 typical H-mode, #18602 high $β_p$ mode
- Both discharges shared nearly identical operating conditions, except for B_T .
- In high $β_P$ discharge #18602, \sim 30% improvement in β_{p} \sim 50% reduction in V_{loop} due to the improved fast ion confinement (see neut. rate and spectrogram)
- The valid deposition of ECH/ECCD was confined to a specific region, denoted as R_{res} ~1.72 ± 0.025 m (equivalent to ψ_{N} ~0.2), with B_T=1.8 T.
- No ITB

Gradual degradation in plasma performance has been observed over a long-time scale to $\sim 10^3 \tau_E$ **in the discharges.**

• Generally, in KSTAR,

the longer the pulse length and the higher the performance, the more severe the degradation of performance.

Investigation of performance degradation (1)

Representative two discharges,

#30291, linearly degrading performance #32768, almost constant performance

- Similar operating conditions
- P_{NBI} : #30291 < #32768, ~0.5 MW
- P_{ECH} : #30291 > #32768, ~0.5 MW
- $\beta_{\rm p}$: #30291 > #32768
- V_{loop} : #30291 < #32768

Investigation of performance degradation (2)

 0-D plasma characteristics analyzed using KSTAR kinetic -EFIT packages

In #30291,

- β_{*P*} degradation comes from β_{*fast*} not β_{*th*}
- Fast ion transport is increased (see D*f*)
- H_{98v2} is almost constant ~1.0-1.1 (typical H -mode confinement)

On the other hand, in #32768,

- $β_{fast}$ and $β_{th}$ are almost constant
- $\beta_{\rm p}$ is almost constant over time
- H_{98v2} is almost constant ~1.0-1.1
- Mainly NBI2 sources are applied
	- Even with higher $P_{NBI, injected}$,
 $P_{NBI, absorbed}$ is lower compared with #30291 \rightarrow relatively lower β_P

Why is fast ion transport increased in #30291?

Investigation of performance degradation (3)

- \div **TAEs impact on β***fast* degradation \rightarrow β_P degradation
	- #30291 has n=2 and n=3 TAEs, degradation, their magnitude is $10⁻¹$ from conventional cases.
	- \cdot #27033 has n=2 TAE, no degradation
	- #32768 has no TAEs, no degradation
	- \rightarrow It seems that n=3 TAE inhances fast ion transport

Process of performance degradation related with TAEs

Our high $β_p$ plasma effectively confines fast ions more Our high high $β_p$ plasma is vulnerable to TAE

TAE is activated spontaneously, but weak due to ECH injection Fast ion pressure is reduced until the TAE is self-deactivated • Weak and long -lasting TAE induces degradation in long -time scale

Self-stabilization of TAEs, in KSTAR high β_P long-pulse discarhges $\rightarrow \beta_P$ converges to ~2.0-2.2

-S. Kim 24/26

#34640 #34664 (GAS fuel) #34700 (GAS fuel, ne signal lost)

In 2023, performance degradation is effectively minimized with upgraded W-shaped tungsten divertor configuration.

- Optimized gas fueling scenario in long-time scale effectively mitigates performance degradation, even with high β_{p} >2.5 state.
- Performance remains relatively constant over \sim 70 seconds. (highly reproducible)
- It is likely that SOL condition is changed with W-shaped divertor.
	- This was not observed in past divertor configurations and is being examined in the current W-shaped divertor configuration.

Summary and Plan for longer pulse discharge in KSTAR

We are securing further appropriate solutions for the issues of long pulse discharge

Heat control on PFC (Solved)

Optimizing shape control and heating scheme, and major upgrade of actively cooled W monoblock divertor

- **Magnetic signal drift in the long-time scale (Solved)**
	- **Improvement with newly installed thermal shielding block on the magnetic probes and control of PFC temperature**
	- **Real-time linear drift correction using Software (in PCS) as well as Hardware improvement**
- **Performance degradation in long-time scale (Solved)**
	- **Identification of Performance degradation – weak and long-lasting TAEs induce fast ion transport**
	- **Establishment of high β^P long-pulse discharge scenario with constant performance over time, affected by gas fueling scenario under W-shaped divertor**

We are still struggling mainly with flux consumption to meet 300-second discharge.

- \rightarrow (plan) Development of reproducible $f_{\text{NI}} \geq 1.0$ operation scenario
- **(plan) Investigation of how this state keeps for a long time**

Supplements

Magnetics were highly suffered from non-linear drift issue under hot and long pulse plasma and this impacted on change of un-intentional plasma shape. → Magnetic signal drift in the region of outboard side are improved.

- **Drifting signals are "less" influence on the shape analysis in yr2020.**
	- Newly installed thermal shielding block on the magnetic probes
		- + ICRF limiter ahead the magnetic probes at middle side.
	- ② Optimized shape to control the increase of PFC temperature

However, control-?

real-time EFIT shape is much different from off-line magnetic EFIT shape in long-time scale

Δβ(t) Δshape(t) ?

- Performance degradation is occurred even though plasma shape is constant.
- performance degradation is less related with shape changes.

Constant performance in long-time scale was achieved eventually,

Performance degradation would be "less" related with impurity contamination in SOL region.

Not all cases, analysis by just these two discharges. This would not be major cause to make performance degradation.

- **VSS (plasma outside) says SOL condition is not major cause to lead performance degradation.**
	- #32768 shows constant performance, even though #32768 VSS is higher than $#32732$ VSS before t \sim 22 sec.
	- In #32732, VSS increases after t~22 sec, then $β_p$ decreases rapidly.
- \triangleright **AXUV Bolometer (plasma inside)** says P_{rad} is 2 times **lower in constant performance discharge.**
	- In #32768, lower P_{rad} is related with higher $P_{absorbed}$.

Major culprit would be inside the plasma, not outside of the plasma.

Constant performance in long-time scale was achieved eventually,

it is confirmed that performance degradation would be "more" related with ELM characteristics.

Not all cases, analysis by just these two discharges. This would be one of causes to make performance degradation.

- **Constant ELM characteristics would lead to minimization of performance degradation in long-time scale.**
	- #32768 constant performance in long-time scale shows constant ELM characteristic with f_{FIM} ~50-70 Hz.
	- #32732 performance degradation in long-time scale shows gradually increasing f_{ELM} 50 \rightarrow 100 Hz and ∆W~15 \rightarrow 10 kJ, and eventually developing mixed ELMs ∆W~5 kJ.
		- \rightarrow This would indicate more plasma energy was released to outside of the plasma in changes of ELM characteristics.

Constant f_{EIM} **comes from what? ..Shape? ..Absorbed power? ..Impurities?**

