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The advancement of long-pulse discharges in KSTAR aims to develop stable and sustainable high-
performance scenarios and test the long-pulse operation capabilities of the device, 1dentifying and

resolving any issues that may arise during such operations from the points of view of both plasma
physics and device engineering.

** The primary H&CD systems employed for long-pulse plasma operation at KSTAR are NBI and ECH. This enables not

only the evaluation of the long-pulse capability of the H&CD systems but also the examination of NBI-driven fast ion
behavior in a long-pulse discharge.

** In particular, the achievement and continuation of a burning plasma state in ITER heavily relies on effectively
preventing the transport of NBI-driven fast ions and fusion-generated a-particles. In this sense, KSTAR can contribute
to studying fast ion behavior in conducting long-pulse plasma operations.

* During long-pulse plasma operation, KSTAR has experienced the following issues.

1. Rapid temperature increase in PFCs due to beam-driven fast ion orbit loss and nonlinear
signal drift in magnetic probes.

2. Insufficient poloidal flux for discharges lasting more than ~102 seconds.

3. Gradual degradation in plasma performance over a long-time scale to ~103 t..
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KSTAR long-pulse approach began in 2015 with conducting a discharge
characterized by high ,>3.0 and zero V

loop*
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* Early NB injection at 0.4 s with 170 GHz ECH injection

* Sufficient heating power (=4.0-5.5 MW)
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KSTAR has faced difficulties in extending pulse length, over ~90 s, in recent years.
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* High B, scenario adopted for high-
performance long-pulse discharge in
KSTAR.

Vi0op decreases as B, increases.

— TAE should be mitigated/suppressed by
precise ECH injection to increase f,.

e Plasma performance degradation over
time makes it difficult to increase the
pulse length.

— Degradation up to ~20%, occurs after
~20 seconds.

— Degradation is related to TAE activities.

— Degradation increases V,,,, and flux
consumption, resulted in touching PF
coil current limit.

* Arrows indicate “degradation in time” occurred up to ~40s.
* Hyun-Seok Kim, et. al., Nucl. Fusion 64 (2024) 016033
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Finally, 102-second high-performance long-pulse discharge
was achieved in 2023 KSTAR experimental campaign.

* Vieop~70mV, Bp~2.5, By~2.1, T, .e>6.0 keV, T; . ~2.5 keV, 0, 4 ~3.0x10"° m™3,

» le,core i,core e,core

— Plasma parameters were similar to other long-pulse discharges.

e Performance maintained for ~70 s and its degradation was much minimized.

e Actively cooled W-shaped tungsten divertor

was SUCCESSfU”y Operated, #32768 (2022), carbon tiled divertor
#34705 (2023), tungsten monoblock divertor

e Real-time MD linear drift correction algorithm
in PCS was successfully worked.

ack exp.)
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For longer pulse length (>10% s) discharge in KSTAR,
we have faced to conditions that limit longer pulse operation in KSTAR,
“Temperature of PFCs” and “Flux consumption of PF coils” along the existing long pulse discharges

/

** Plasma Facing Component(PFC) Temperature

Carbon tiled PFCs : 600 °C limit and Tungsten monoblocks of lower divertors : 300 °C limit in thermocouples

— Control and reduction of fast ion loss to PFC > alleviation of Poloidal Limiter temperature (T;)
(1) Optimization of plasma shape and operation parameters to reduce fast ion bad orbit loss
(2) Avoidance of MHDs (Alfven activities, Kink and Tearing modes) to reduce fast ion transport loss

— Control and reduction of heat flux to PFC > alleviation of Divertor temperature (Tp, Tops Tip)

(1) Control of striking point location to avoid normal impact of heat flux on divertor plate

** Flux consumption

PF Coils : 15 kA/turn limit due to CS preloading and Apparent power limit < 140 MVA
— Development of higher plasma performance, B, with controlled MHDs as long as possible
(PF coils almost reached their limits at t,,<~80s)

(1) Preventing performance degradation in long-time scale

(2) Reliable real-time EFIT operation by improving drifting signals in magnetics in long-time scale
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Heat control of PFCs in KSTAR long-pulse discharge

Mitigation of magnetic signal drift in the long-time scale

Development of high B, discharge in KSTAR and

identification of performance degradation in long-time scale
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Poloidal limiter overheats due to fast ion orbit loss. (1)
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Low I, (400kA) long-pulse operation is
limited due to PL overheat due to fast
ion hit on the PL.

NuBDeC* code has been analyzed and
produced the consistent result with
the experiment.

*T. Rhee PoP26(2019)112504
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lonized fast ions in the high field side hit the
poloidal limiters and inboard divertor plate.

If we assumed each beam power is 1MW
(total 3MW), maximum loaded power on
limiter side is estimated to ~6 MW/m?2.
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Poloidal limiter overheats due to fast ion orbit loss. (2) NBI source dependency

% 280k test particles at each source

NBI1 . 14000 T T .
x10° NBI1-A (R,,=1.48 m) NBI2-A (Z= 0.00 m), on-axis 12000 - w— 400KA |
& 20 - NBI1-B (R;,,=1.73 m), NBI2-B (Z = —0.98 m), % 10000 - = GO0KA |
—g § most tangential up-looking, off-axis &: 8000 |- - 800KA |-
——r 2 E 154 S 6000}
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Poloidal | “""'“ . On-axis with Z = 0.0 m in NBI1 R{;;=1.56 m in NBI2 20001
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g . ¢
{ \\-»., | NuBDec analysis
Fostlon loss 3 LA sine-though NBI1-A NBI1-B NBI2-A NBIZ-B

Detector (FILD) armors

** Amount of fast ions lost to Poloidal Limiter varies depending on the beamlines of the NBI sources.

# Off-axis e« NBI1-C contributed significantly to the fast ion orbit loss to the poloidal limiter.

2-
: ?')'i'_q‘,‘ds — fastions ionized in the high-field side drift out and strike the PFCs as they rotate poloidally.

B ok axis — tangential radius of NBI1-C is 1.23 m, and its beamline touches the inboard limiter.

— NBI1-C produces a more significant number of fast ions on the high-field side.

— NBI1-Cis unsuitable for long-pulse experiments where the rapid temperature increase in the poloidal
limiter should be avoided.

(NBI1-A, NBI1-B, NBI1-C, NBI2-A, NBI2-B, and NBI2-C contributed ~19 %, ~1 %, ~38 %, ~9 %, ~17 %, and ~16 %.)
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Poloidal limiter overheats due to fast ion orbit loss. (3) shape dependency
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s Amount of fast ions lost to the poloidal limiter depends on the plasma shape.

* R, showed an almost linear increase from ~50s, reaching R, ,=2.27m at 89s.

(due to significant signal drift in the magnetic probes)

out™

* Increase in R, corresponded to the increase in fast ions lost to the poloidal limiter.

* Poloidal limiter experienced rapid temperature growth after ~50s.
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PFCs’ temperatures were able to be controlled with optimizing plasma shape and NBI heating scheme.

Poloidal Limiter
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¢ To mitigate the temperature increase of
the poloidal limiter (Tp),

e appropriate NBI sources are selectively utilized,
which is no use of NBI1-C source

NBI (kv) 1-A 1-B 1-C

#20812 - 90 90 . . .
920878 — 90 90 plasma shape is controlled mainly by keeping
#1735 80 90 —

Ry <~2.21m

(6000ms)

* Increasing rate of T, was reduced
when NBI1-C was removed.

* NBI1-C beamline touches the inboard limiter.

* high shine-through power loss with low
density plasma, ~2.0x10%° m3.

“* Increasing rate of T, was reduced by
changing the position of the striking
point.
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Actively cooled tungsten divertors experienced temperature changes of less than 15 °C in
102-second high-performance long-pulse discharge.

« From a PFC temperature perspective, there are no issues even for operating for 300 seconds with the current injection power.

Central Divertor Outboard Divertor Inboard Divertor Poloidal Limiter
500 A b 500 A 500 1 500 1
: ;:ar 0;1 touse > 80 s
. 400- ungsten | 4004 400 - 400 -
£
I
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0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
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Heat control of PFCs in KSTAR long-pulse discharge

Mitigation of magnetic signal drift in the long-time scale

Development of high B, discharge in KSTAR and

identification of performance degradation in long-time scale
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Magnetics were highly suffered from nonlinear drift issue under hot and long-pulse
plasma and this impacted on change of unintentional plasma shape.

#21735 off-line magnetic-EFIT
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Shape using drift corrected signals was much different from one

using un-corrected signals, but real time EFIT did not know it.

Especially, R,,; should be controlled within ~2.21m to prevent from

the increase of poloidal limiter temperature.

¢ Following solutions are considered,

— Installation of thermal shielding block on magnetics

— Development of real time nonlinear drift correction algorithm
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Mitigation of
nonlinear signal drift
in magnetic probes
by installation of
thermal shielding
protector
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We also confirmed that magnetic probes were experiencing accumulated signal drift in a day.

Located behind lower central divertor

0.4 1 PCMP4P28R
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Shot count in 2021 KSTAR campaign
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* There are many signals that shows the accumulated signal drift > 0.3mV/s in a day. 0.4 { PCMP4P28R “F40
(Our Drift Criterion <0.3mV/s) g 024 1 - 30 %
g
— The morning and afternoon shots derive different shape results in rtEFIT operation. % 0.0 7 é
— The next day, the drift level returns to the IDLE state. (Recovered) 58777 =
—0.4 - IR BR 11y K
— 12 min. of shot interval could not fully recover the MPs’ drift to its original state. 0 10 20 30 °
. . . h in th 7/21
— The degree of signal drift appears to be affected by the pulse length of discharge. Shot count in the day Sep/07/
- We need the method to minimize the drift of magnetic signals in real time.
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During 102 seconds, there were changes in the plasma shape of less than 2 cm, and it is
perceived that MD drift was significantly reduced by hardware and software improvements.

#34705 offline EFIT(dc) rtEFIT(dc) rtEFIT
224 1541 R, bot (M) * Real-time linear MD drift
. 152 correction algorithm in PCS is
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4
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Oct. 14-18 (2024) 2nd IAEA TM LPO, H.-S. Kim S 17/26



Heat control of PFCs in KSTAR long-pulse discharge
Mitigation of magnetic signal drift in the long-time scale

Development of high [, discharge in KSTAR and

identification of performance degradation in long-time scale
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We also confirmed that magnetic probes were experiencing accumulated signal drift in a day.
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< Lower V,,,, scenario with high B,

* Flux Consumption
— Ipp < 15 kA/turn due to preload uncertainty of CS coils
— Available flux during discharge ~ 11.9 Wb
— Auvailable flux during flat-top phase ~ 8.2-9.3 Wb
~ Vieop <~82-93 mV for 100s pulse length
— Vieop =~27-31 mV for 300s pulse length

* Generally, in our database,
— Vioop reduces with f3 increase
— Weak dependency btw. V, vs. Pyp; and By
- Need to seek NBI efficiency 1

..For robustness of lower V,,, scenario,
. Apphcatlon of ECH helps
— Increase Iyp; & T, "n 0% with D~0.0 m?/s
— Mitigate/suppress TAEs « D, reduction
—> KSTAR high B, operation scenario
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To achieve a high p, state at KSTAR,
ECH/ECCD deposition must be accurately controlled
to a narrow vicinity near the magnetic axis.

e #18597 typical H-mode, #18602 high B, mode

* Both discharges shared nearly identical operating
conditions, except for B..

* In high B, discharge #18602,
~30% improvement in B,
~50% reduction in V.,
due to the improved fast ion confinement

(see neut. rate and spectrogram)

* The valid deposition of ECH/ECCD was confined to a
specific region, denoted as R, ,;~1.72 + 0.025 m
(equivalent to ¢~0.2), with B;=1.8 T.

* NolITB
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Gradual degradation in plasma performance has been observed over
a long-time scale to ~10° 1 in the discharges.

* Generally, in KSTAR,

the longer the pulse length and the higher the performance, the more severe the degradation of performance.

Pyp=3.6-39 MW, P, =0.8 MW, 1,0.40-0.45MA, B,=2.4-25T

17321
. j | 18441
2 18306
A 17214
%0 T‘T 17353
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By . B - B e
GRS M o e it e LD i 7 R ER
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10 20 30 40 = * "
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Investigation of

performance degradation (1)

“* Representative two discharges,

#30291, linearly degrading performance

#32768, almost constant performance

* Similar operating conditions
Pygr 1 #30291 <#32768, ~0.5 MW
Ppey : #30291 > #32768, ~0.5 MW
 Bp :#30291 > #32768

Vieop : #30291 <#32768
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Investigation of
performance degradation (2)

¢ 0-D plasma characteristics analyzed using
KSTAR Kkinetic-EFIT packages

In #30291,

* Bpdegradation comes from B, not B,

« Fast ion transport is increased (see Df)_
Hogg,, 1s almost constant ~1.0-1.1
(typical H-mode confinement)

On the other hand, in #32768,

* P and B, are almost constant

* Bpis almost constant over time

*  Hyg,, is almost constant ~1.0-1.1

e Mainly NBI2 sources are applied

— Even with higher Pypjpiccteds

PNBI,absorbed is lower
compared with #30291
- relatively lower fp

Why is fast ion transport increased in #30291?
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Investigation of performance degradation (3)

s TAEs impact on B/us: degradation - Bp degradation

*  #30291 has n=2 and n=3 TAEs, degradation,

their magnitude is 10-! from conventional cases.

» #27033 has n=2 TAE, no degradation
*  #32768 has no TAEs, no degradation

- It seems that n=3 TAE inhances fast ion transport

¢ Process of performance degradation related with TAEs

Our high high B, plasma is vulnerable to TAE

Our high B, plasma effectively confines fast ions more

& tdegrat‘led <20s

@ tdegraded =240s

TAE is activated spontaneously, 2.8
but weak due to ECH injection
Fast ion pressure is reduced 261
until the TAE is self-deactivated Sk
Weak and long-lasting TAE '
. . e
induces degradation § 22;
in long-time scale &
\ 4 i
ar 2.0-
a
Self-stabilization of TAEs, 18-
in KSTAR high B; long-pulse discarhges
> Bp converges to ~2.0-2.2 1617 7
141"
1.4
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P
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-
-
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»
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#34640 #34664 (GAS fuel) #34700 (GAS fuel, n, signal lost)

I ne<10m> ____________ e In 2023, performance degradation is effectively
g, fil - -. ittt iy minimized with upgraded W-shaped tungsten
rrrrrr rrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrr —————————————————————————————————————— R divertor configuration.

- :::::.;::..".::.".:.;:::;:...f;:..:;..:: ......... - == .... '...‘I.f..f"..'.“..‘fff..é.'fi.".ii' ..... =~ e Optimized gas fueling scenario in long-time scale effectively mitigates
: | ‘ : : 5 : performance degradation, even with high ,>2.5 state.

* Performance remains relatively constant over ~70 seconds. (highly reproducible)
* ltis likely that SOL condition is changed with W-shaped divertor.

— This was not observed in past divertor configurations and is being examined
in the current W-shaped divertor configuration.

10.0 2d.o

Dcx base (a u.)

1 BDASE e
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Summary and Plan for longer pulse discharge in KSTAR

We are securing further appropriate solutions for the issues of long pulse discharge
» Heat control on PFC (Solved)

-> Optimizing shape control and heating scheme, and major upgrade of actively cooled W monoblock divertor

» Magnetic signal drift in the long-time scale (Solved)
- Improvement with newly installed thermal shielding block on the magnetic probes and control of PFC temperature
-> Real-time linear drift correction using Software (in PCS) as well as Hardware improvement

» Performance degradation in long-time scale (Solved)
-> Identification of Performance degradation — weak and long-lasting TAEs induce fast ion transport
-> Establishment of high B, long-pulse discharge scenario with constant performance over time,
affected by gas fueling scenario under W-shaped divertor

We are still struggling mainly with flux consumption to meet 300-second discharge.

= (plan) Development of reproducible f,>1.0 operation scenario
- (plan) Investigation of how this state keeps for a long time

Oct. 14-18 (2024) 2nd IAEA TM LPO, H.-S. Kim 26/26



Supplements
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Magnetics were highly suffered from non-linear drift issue under hot and long pulse plasma
and this impacted on change of un-intentional plasma shape.
= Magnetic signal drift in the region of outboard side are improved.

» Drifting signals are “less” influence on the shape analysis in yr2020.

@D Newly installed thermal shielding block on the magnetic probes
+ ICRF limiter ahead the magnetic probes at middle side.
(@ Optimized shape to control the increase of PFC temperature
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> However, control-? AB(y) €2 Ashape(t) ?

real-time EFIT shape is much * Performance degradation is occurred
different from off-line magnetic even though plasma shape is constant.
EFIT shape in long-time scale « performance degradation is less

related with shape changes.
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Constant performance in long-time scale was achieved eventually,
Performance degradation would be “less” related with impurity contamination in SOL region.
Not all cases, analysis by just these two discharges. This would not be major cause to make performance degradation.

AXUYV Bolometer
32768 32732 251|| VSS 32768 32732 > 32768 32732
2.5 (same heating condition) ? 504 M ‘S 0.06 .
~ < g
e 209 S 15 = 0.041
[
1.5 T m 1.0 4 W mh 0.02 -
' rtEFIT issue
0.5 | 0_00 , I I ‘ I I I‘ : : :
12 . e 0 10 20 30 40 50 60 70 80
g 304 - Visible SpectroScopy (VSS) time (s)
) 2.5 E oy ® o
S | mﬂw > VSS (plasma outside) says SOL condition is not
2.0 . .
oy ] major cause to lead performance degradation.
151 EC off
1 ’ * #32768 shows constant performance, even though

VSS #32768 VSS is higher than #32732 VSS before t~22 sec.
e In#32732, VSS increases after t~22 sec, then B,

07 w decreases rapidly.
. _I“ » AXUV Bolometer (plasma inside) says P,_4 is 2 times

lower in constant performance discharge.

= 8: Tor. Do, ch.02 * In#32768, lower P, is related with higher P, . oq-
(R,Z),, locates on CD. LA Mean( )

3 |

2768 has extreme 6,~0.92. B 4 | agaliphsdhed™ - Major culprit would be inside the plasma,
, 24 .
(#32732's 6,~0.84) N Base-Line() not outside of the plasma.
0 10 20 30 40

} ULLLIE (S)
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Constant performance in long-time scale was achieved eventually,
it is confirmed that performance degradation would be “more” related with ELM characteristics.
Not all cases, analysis by just these two discharges. This would be one of causes to make performance degradation.

Power Spectral Density of D, 32768

. Power Spectral Density of D, 32732

32768 32732

P e
fﬁt NVTTF:F%fm”T“rm

JeLm (H2)

40 50 60 70 80 ) !
time (s) Oy 0
0 15 20 25 30 35 40 45 50 0 15 20 25 30 35 40 3 45 [)
> Constant ELM characteristics would lead to time (s) time (s)
minimization of performance degradation in long-time scale. ] .
P & € Jepm increses . Mixed ELMs

* #32768 constant performance in long-time scale shows
constant ELM characteristic with f; ,,~50-70 Hz.

* #32732 performance degradation in long-time scale shows
gradually increasing f;,, 50100 Hz and AW~15->10 kJ,
and eventually developing mixed ELMs AW~5 k.

—> This would indicate more plasma energy was released to
outside of the plasma in changes of ELM characteristics.
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Constant f; ,, comes from what? ..Shape? ..Absorbed power? ..Impurities?
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