High Density as an Avenue towards High Confinement Quality and Core-Edge Integration in Advanced Tokamaks

S. Ding¹, <u>A. M. Garofalo¹</u>, X. Z. Gong², H. Q. Wang¹, L. Wang², W. Choi¹, J. P. Qian², J. Huang², M. Kotschenreuther³, D. Hatch³, S. Mahajan³, D. B. Weisberg¹, Z. Y. Li¹, Z. Yan⁴, X. Jian², S.-G. Baek⁵, P. Bonoli⁵, G. Wallace⁵, D. Eldon¹, B. S. Victor⁶, A. Marinoni⁷, Q. M. Hu⁸, I. S. Carvalho¹, T. Odstrčil¹, K. D. Li², A. W. Hyatt¹, T. H. Osborne¹, J. McClenaghan¹, C. T. Holcomb⁶, J. M. Hanson⁹, Y. X. Sun^{2,10} and Z. H. Wang^{2,10}

¹General Atomics, P. O. Box 85608, San Diego, CA 92186-5608, USA
²Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031, China
³ExoFusion, Austin, TX, USA
⁴University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
⁵Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁶Lawrence Livermore National Laboratory, Livermore, California 94551, USA
⁷University of California San Diego, La Jolla, CA, 92093, USA
⁸Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, 08543, USA
⁹Department of Applied Mathematics and Applied Physics, Columbia University, New York, New York 10027-6900, USA
¹⁰University of Science and Technology of China, Hefei, 230026, China

Supported in part by the US DOE under DE-FC02-04ER54698 and DE-SC0010685

High Density as an Avenue towards High Confinement Quality and Core-Edge Integration in Advanced Tokamaks

S. Ding¹, <u>A. M. Garofalo¹</u>, X. Z. Gong², H. Q. Wang¹, L. Wang², W. Choi¹, J. P. Qian², J. Huang², M. Kotschenreuther³, D. Hatch³, S. Mahajan³, D. B. Weisberg¹, Z. Y. Li¹, Z. Yan⁴, X. Jian², S.-G. Baek⁵, P. Bonoli⁵, G. Wallace⁵, D. Eldon¹, B. S. Victor⁶, A. Marinoni⁷, Q. M. Hu⁸, I. S. Carvalho¹, T. Odstrčil¹, K. D. Li², A. W. Hyatt¹, T. H. Osborne¹, J. McClenaghan¹, C. T. Holcomb⁶, J. M. Hanson⁹, Y. X. Sun^{2,10} and Z. H. Wang^{2,10}

¹General Atomics, P. O. Box 85608, San Diego, CA 92186-5608, USA
²Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031, China
³ExoFusion, Austin, TX, USA
⁴University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
⁵Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁶Lawrence Livermore National Laboratory, Livermore, California 94551, USA
⁷University of California San Diego, La Jolla, CA, 92093, USA
⁸Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, 08543, USA
⁹Department of Applied Mathematics and Applied Physics, Columbia University, New York, New York 10027-6900, USA
¹⁰University of Science and Technology of China, Hefei, 230026, China

Supported in part by the US DOE under DE-FC02-04ER54698 and DE-SC0010685

Presented at the

First demonstration of high β_P scenario with large radius ITB obtained on DIII-D with KSTAR operation constraints on June 14! [YoungMu Jeon, et al, APS 2024]

Takeaway: Breakthroughs Achieved for Improved Energy Confinement at Plasma Density near the Greenwald Value

- Both steady-state fusion pilot plants (FPPs) and ITER Q=10 at significantly lower I_p require density Greenwald fraction (f_{Gr}) > 1 with H_{98y2} > 1
- High-β_P experiments on DIII-D achieve first such demonstration in a tokamak
- Key physics: enhanced α -stabilization of turbulent transport at high density gradient
- Same physics applied to EAST leads to nearly doubled T_i
- Excellent core-edge integration: small ELMs and divertor detachment also achieved at high H_{98y2} and high f_{Gr}

Outline

- On the performance requirements for steady-state fusion pilot plants (FPPs) and for ITER Q=10 P_{fus}=500 MW operation at reduced I_p
- DIII-D high- β_P experiments and transport analysis
- Simulations of EAST high- β_P plasmas and theory-guided experiments
- Core-edge integration in DIII-D high- β_P plasmas

- On the performance requirements for steady-state fusion pilot plants (FPPs) and for ITER Q=10 P_{fus}=500 MW operation at reduced I_p
- DIII-D high- β_P experiments and transport analysis
- Simulations of EAST high- β_P plasmas and theory-guided experiments
- Core-edge integration in DIII-D high- β_P plasmas

High Energy Confinement Quality and High Fuel Density are Two Key Elements for Economically Attractive Fusion

- Energy confinement quality (H_{98y2}) is the highest leverage parameter for fusion capital cost
 Wade, Fusion Sci. Technol. 2021
 Hammett, Maxwell Prize Address, APS 2024
- Thermonuclear power density $p \sim n_i^2 < \sigma v$ Wesson, Tokamaks 2004
- Both f_{Gr} and H_{98y2} above unity proposed in steady-state FPP Designs
 - f_{Gr} =line-avg n_e/n_{Gr}
 - $n_{Gr}=I_p/\pi a^2$, an empirical density limit on H-mode pedestal

FPP Device	f _{Gr}	H _{98y2}
CFETR	0.96	1.42
K-DEMO	1.0, 1.13	≥1.3
ARIES-ACT	1.0, 1.3	1.22 – 1.65
CAT-DEMO	>1.0	1.2 – 1.51
GA-FPP	1.2	≥1.5

Zhuang, Nucl. Fusion 2019 Yeom, Fusion Eng. Des. 2013 Kessel, Fusion Sci. Technol. 2015 Wade, Fusion Sci. Technol. 2021 Buttery, Nucl. Fusion 2021 Shi, APS 2022 Shi, APS 2023

ITER Operation at I_P Significantly Lower than 15 MA could Provide A Safer Path to Q=10 P_{fus}=500 MW, but Requires H_{98y2}>1.2 at $f_{Gr} \ge 1$

- 15 MA approach: q₉₅~3, H_{98y2}=1.0, f_{Gr}=0.85
 - Risks: Disruption, MHD, divertor heat flux...

ITER Operation at I_P Significantly Lower than 15 MA could Provide A Safer Path to Q=10 P_{fus}=500 MW, but Requires H_{98y2}>1.2 at $f_{Gr} \ge 1$

- Risks: Disruptions, MHD, divertor heat flux...
- Reduce I_p, while keeping constant B_T, P_{aux}, n and T in 0D modeling
 - Constant τ_E
 - Constant Q and P_{fus}
- $\beta_T = nk_BT/(B^2/2\mu_0) = constant$
- $\beta_{\rm N} = \beta_{\rm T}/(I_{\rm P}/aB) \sim 1/I_{\rm P}$
- $f_{\rm Gr} = \langle n_{\rm e} \rangle / (I_{\rm P} / \pi a^2) \sim 1 / I_{\rm P}$
- $H_{98y2} = \tau_E / \tau_{98y2} \sim 1 / I_P^{0.93}$

 $\tau_{98y2} = 0.0562 \, I_{P}^{0.93} \, B_{T}^{0.15} n_{e}^{0.41} P_{H}^{-0.69} M^{0.19} R^{1.97} \epsilon^{0.58} \kappa^{0.78}$

Garofalo et al, APS 2024

Theory-based High Fidelity Modeling Shows High β_P Scenario Can Enable ITER Q Goals

ITER Q=10.4±4.3 I_p=7.5±0.3 MA Self-consistent ITER modeling using high β_{P} scenario Temperature (keV) 15 by STEP in OMFIT Τe Q=5 steady-state predicted with $f_{Gr} \sim 1.3$ and $H_{98v2} > 1$ 10 at I_p~8.3 MA (q₉₅~7, β_N~3.0) McClenaghan et al, Day-1 H&CD powers Nucl. Fus. 2020 $- P_{fus} \sim 400 \text{ MW}$ Q=10 predicted with $f_{Gr} \sim 1.4$ and $H_{98v2} \sim 1.7$ at $I_p \sim 7.5$ MA Density (10¹⁹ m⁻³) **(q₉₅~8**, β_N~2.8) 10 Ding et al, IAEA FEC Day-1 H&CD powers 2021 $- P_{fus} \sim 350 \text{ MW}$ ni Operating regimes with f_{Gr} > 1 and H_{98v2} > 1 0.2 0.4 NO need to be demonstrated in experiments 0.6 0.8

- ITPA database for ITER Q=10 H-mode q₉₅=2.7-3.3
 - International tokamaks
 - No constraints on toroidal rotation/injected torque

- ITPA database for ITER Q=10 H-mode q₉₅=2.7-3.3
 - International tokamaks
 - No constraints on toroidal rotation/injected torque

significant H_{98y2}>1 at f_{Gr}>1

No experiment shows

- ITPA database for ITER Q=10 H-mode q₉₅=2.7-3.3
 - International tokamaks
 - No constraints on toroidal rotation/injected torque

No experiment shows significant H_{98y2}>1 at f_{Gr}>1

- ITPA database for ITER Q=10 H-mode q₉₅=2.7-3.3
 - International tokamaks
 - No constraints on toroidal rotation/injected torque
- Remove q₉₅ constraint, single tokamak (DIII-D)
- Still No experiment shows significant H_{98y2}>1 at f_{Gr}>1

Only High- β_P Scenario Has Overcome the Performance Limit

- ITPA database for ITER Q=10 H-mode q₉₅=2.7-3.3
 - International tokamaks
 - No constraints on toroidal rotation/injected torque
- Remove q₉₅ constraint, single tokamak (DIII-D)
- Still No experiment shows significant H_{98y2}>1 at f_{Gr}>1

Until breakthrough from high- β_P experiments

Only High-β_P Scenario Has Overcome the Performance Limit, both on JT60-U and DIII-D

- ITPA database for ITER Q=10 H-mode q₉₅=2.7-3.3
 - International tokamaks
 - No constraints on toroidal rotation/injected torque
- Remove q₉₅ constraint, single tokamak (DIII-D)
- Still No experiment shows significant H_{98y2}>1 at f_{Gr}>1

Until breakthrough from high- β_P experiments

Outline

- SOn the performance requirements for steady-state fusion pilot plants (FPPs) and for ITER Q=10 P_{fus}=500 MW operation at reduced I_p
- DIII-D high- β_P experiments and transport analysis
- Simulations of EAST high- β_P plasmas and theory-guided experiments
- Core-edge integration in DIII-D high- β_P plasmas

Breakthrough: Stored Energy and Confinement Quality Increase as Density Exceeds the Greenwald Value

- First time achieve sustained H_{98y2}~1.5 at f_{Gr}>1.1
- β_N>3
- Mixed co-/counter-I_p NBI injection
- $T_{i0}/T_{e0} \sim 1.25$
- D₂ gas puffing

Strong Density Internal Transport Barrier (ITB) Develops during Strong D₂ Gas Puffing

- Strong density ITB elevates core density, while keeping pedestal density below n_{Gr}
 - $f_{Gr,ped} \sim 0.7, f_{Gr,0} \sim 1.4$
- Strong temperature ITB develops as well

Ding et al, Nature 2024

Weak Turbulence Measured at High Density and High α_{MHD}

- $\alpha_{\text{MHD}} \sim -\frac{q^2}{B^2} R \frac{\mathrm{d}p}{\mathrm{d}r} \sim \frac{\mathrm{d}\beta_{\text{P}}}{\mathrm{d}r}$, a normalized pressure gradient
- Low-k fluctuations measured at mid-radius
 - 0.1-0.2 cm⁻¹

Theory Predicts Enhanced Density Gradient Amplifies Turbulence Suppression by High α_{MHD}

- GENE simulation based on theoretical parameters
 - As ∇n increases, turbulence transitions from ∇T driven (ITG) to ∇n driven (TEM)
- At high α_{MHD} , unstable eigenfunction becomes narrower in poloidal angle (θ)

- Narrow eigenfunction couples poorly to ⊽n driven modes
 - Electrons trapped in large banana orbits
 - Electrons react adiabatically
- Eventually the turbulence loses free energy drive

Experiments Confirm High β_P Favorable forDing, Invited Talk,
APS 2023Low Turbulence at High Density

• High β_P vs Low q_{95} H-mode

Experiments Confirm High β_P Favorable forDing, Invited Talk,
APS 2023Low Turbulence at High Density

DIII-D # 190904, p=0.65 @ 4.2

TGLF* Modeling

Dependence of Turbulent Transport on F_p Reverses from Low to High Local q

- Use low-q experimental data at ρ =0.65
- **Roughly three regimes**
 - High q: low transport at high F_p
 - Medium q: similar transport at high F_p
 - Low q: high transport at high F_p ____
- Stronger α -stabilization effect at high q
 - $\alpha_{MHD} \sim q^2$

2nd IAEA Technical Meeting on Long-Pulse Operation of Fusion Devices, Oct 14-18, 2024, Vienna, Austria

same magnetic shear

Ding et al, Nature 2024

Dependence of Turbulent Transport on F_p Reverses from Low to High Local q

2nd IAEA Technical Meeting on Long-Pulse Operation of Fusion Devices, Oct 14-18, 2024, Vienna, Austria

Ding et al, Nature 2024

Reduced Turbulence Transport at High Density Gradient Only Predicted at High q and High β

Reduced Turbulence Transport at High Density Gradient Only Predicted at High q and High β

- At low-q, transport increases with F_p for all tested β_e
- At high-q, higher turbulence transport at higher F_p , if β_e is low

Favorable conditions for accessing <u>low transport at high density</u> (simultaneous f_{Gr}>1 and H_{98y2}>1): High Local q, high β (→high α_{MHD}) and low magnetic shear

Outline

- On the performance requirements for steady-state fusion pilot plants (FPPs) and for ITER Q=10 P_{fus}=500 MW operation at reduced I_p
- DIII-D high- β_P experiments and transport analysis
- Simulations of EAST high- β_P plasmas and theory-guided experiments
- Core-edge integration in DIII-D high- β_P plasmas

EAST Long-pulse Plasmas Are a Version of High-B_P Scenario

 EAST achieved for 403 s H-mode with β_P ~2.5 and f_{Gr}~0.7 using only RF power

Gong et al, Nucl. Fusion 2024

EAST High β_P Plasma Has Comparable β_P to DIII-D Case, but No Large-Radius ITB

_ne(10¹⁹m⁻³)

0.6

Te(keV)

D

0.4

Ti(keV)

0.2

Wu. Nucl. Fusion 2019

0.0

- Scientific challenges:
 - T_e ITB at small radius
 - T_i<<T_e (Long-standing limitation)
- Important to understand how to increase pressure gradient at mid-radius
 - Turbulence transport?
 - Not enough power?
 - 3.25 MW in the discharge in this slide
- Use four different codes to understand/predict how to improve this

	EAST	DIII-D
q ₉₅	6.5-11	6-12
β_{P}	1.95-4.2	1.7-3.5
$ ho_{\text{ITB}}$	0.3	0.6-0.8

DIII-D

0.8

1.0

Ion Temperature Gradient (ITG) Instability is Dominant at Mid-Radius in EAST Plasma

- Gyrokinetic simulations using CGYRO
- Exp. equilibrium 'Trapped' in an ITG mountain
 - Reduced magnetic shear could avoid ITGs

ASIP

Transport Modeling Suggests Adding Power Alone Cannot Increase Core Pressure Gradient

- TGYRO+TGLF* reproduces experimental profiles
 - Predict T_e, T_i and n_e
- Power scan up to $3 \times$
 - More P_e or P_i

Transport Modeling Suggests Improved Normalized Pressure Gradient at Mid-Radius with Higher q_{min}

2nd IAEA Technical Meeting on Long-Pulse Operation of Fusion Devices, Oct 14-18, 2024, Vienna, Austria

ASIPP

Transport Modeling Suggests Strong α_{MHD} Improvement at Mid-Radius with Combined Actuators

APS 2023

reproduces

2nd IAEA Technical Meeting on Long-Pulse Operation of Fusion Devices, Oct 14-18, 2024, Vienna, Austria

ASIPP

High Density Gradient, High Z_{eff} and High Z_{eff} Gradient Expected to Suppress Turbulent Transport

- GENE nonlinear modeling
- High F_p can suppress turbulent heat flux
- Increase Z_{eff} enhances the suppression effect
- Suggests experimental approach: impurity injection at large radius

Kotschenreuther et al, Nucl. Fusion 2024

Time-Dependent Modeling Suggests Highest T_i with Combined Actuators

- FASTRAN+TGLF^{*}, EAST experimental data[†] as starting point
 - T, n predictions

ASIPI

Time-Dependent Modeling Suggests Highest T_i with Combined Actuators

- FASTRAN+TGLF^{*}, EAST experimental data[†] as starting point
 - T, n predictions
- Modeling approaches for better confinement
 - Particle source: increase density gradient
 - Current ramp: reduce magnetic shear
 - Higher Z_{eff}: mimic impurity injection

ASIPP

Time-Dependent Modeling Suggests Highest T_i with Combined Actuators

- FASTRAN+TGLF^{*}, EAST experimental data⁺ as starting point
 - T, n predictions

*SAT2 EM

- Modeling approaches for better confinement ,
 - Particle source: increase density gradient
 - Current ramp: reduce magnetic shear
 - Higher Z_{eff}: mimic impurity injection
 - Combinations of the above

Experiment proposal developed based on the guidance of all modeling results

ASIPP

Doubled Input Power Shows Small T_{i0} Increase

- Power level from 4.8 MW to 10.9 MW
- 30% increase in T_{i0}
- Confirms the previous transport modeling result about limited effect of increasing power alone
- Need to incorporate other physics for turbulence suppression
 - Follows the guidance of transport modeling

Ding, Invited Talk, APS 2023

• Ar injection: small increase of T_i

- Ar injection: small increase of T_i
- Add 2nd I_p ramp-up: further improved T_i

- Ar injection: small increase of T_i
- Add 2nd I_p ramp-up: further improved T_i
- Increase Ar amount: highest T_i
 - Add 2nd Ar injector, total amount doubled

- Ar injection: small increase of T_i
- Add 2nd I_p ramp-up: further improved T_i
- Increase Ar amount: highest T_i
 - Add 2nd Ar injector, total amount doubled
- Confirms transport modeling results on the best turbulence suppression by the combined actuators

Ding, Invited Talk, APS 2023

Outline

- On the performance requirements for steady-state fusion pilot plants (FPPs) and for ITER Q=10 P_{fus} =500 MW operation at reduced I_p
- DIII-D high- $\beta_{\rm P}$ experiments and transport analysis
- Simulations of EAST high- β_P plasmas and theory-guided expe
- Core-edge integration in DIII-D high- β_P plasmas
 - No large ELMs
 - + high confinement quality - Divertor detachment

Hot & dense core surrounded by radiative mantle

Radiative

Small ELMs Observed at High Normalized Density and Confinement

H98v2

TGr

1.5

1.0

0.5

DIII-D # 190904

 $p_{tot, \rho = 0.88}/20$ (kPa)

- Total pedestal pressure remains ~constant
- Reduced divertor heat load at higher density with small ELMs
 - Divertor close to detachment

Discharge Naturally Evolves towards Expected Parameter Domain of Small ELM Regime

Literature points out key parameters related to small **ELM** regime Xu, Rev. Mod. Plasma Phys. 2023

- Flat pedestal density profile
 - Reduced peak pedestal n_e gradient at high density
- High separatrix density
 - Increased n_{sep} and reduced n_{ped}/n_{sep} at high density
 - May be related with strong gas puffing
- **High** β_P
 - $-\beta_{\rm P}$ increasing over time
- High q₉₅
 - Slightly increasing with $\beta_{\rm P}$

2nd IAEA Technical Meeting on Long-Pulse Operation of Fusion Devices, Oct 14-18, 2024, Vienna, Austria

2024

Low Growth Rate of Low-n Modes and Predominance of High-n Resistive Ballooning Mode near the Separatrix Lead to Small ELMs

² D_α (a.u.)

- Low-n (~10) PBM at pedestal peak gradient
 - BOUT++ agrees with ELITE
 - Small ELM case has lowest growth rate
- High-n RBM at SOL and near separatrix

High $\beta_{\mathbf{P}}$ Plasmas Provided First Demonstrations of Excellent **Energy Confinement Quality with Full Divertor Detachment**

- N₂ injection in feedforward
- Pedestal height degrades, while core pressure is maintained

Wang et al, Nat. Commun. 2021 Wang et al, Phys. Plasmas 2021

High β_P Plasmas Provided First Demonstrations of Excellent Energy Confinement Quality with Full Divertor Detachment

- N₂ injection under feedback control
- Pedestal height degrades, while core pressure is maintained

Wang et al, Nat. Commun. 2021 Wang et al, Phys. Plasmas 2021

High β ITB Core + Full Divertor Detachment + ELM Suppression in ITER-Similar Shape Achieved on DIII-D

• Neon injection for divertor detachment

 $J_{sat}(A/cm^2)$

- Steady ELM suppression
- Core performance maintained

DIII-D # 186027

High β_P Plasmas Exhibit Core-Edge Integration Advantages Compared to Other H-Mode Scenarios

• High H_{98y2} with high Degree of Detachment (DoD) and low pedestal height

Make up for pedestal degradation and maintain global performance by breaking core stiffness and developing large-radius ITB

On DIII-D, High β_P Is Only Scenario Not Affected by Operation with Strike Point on Tungsten Divertor Ring

On DIII-D, High β_{P} Is Only Scenario Not Affected by Operation with Strike Point on Tungsten Divertor Ring

Strike point moves onto W surface when core state well developed

DIII-D # 191433

Can we access the same core state if the strike point is on W from the onset?

Density $\leftarrow \rightarrow$ Confinement Synergy Is Extremely Favorable towards a Core-edge Integration Solution

- High density reduces the temperature at divertor and wall
 - Experiment close to full detachment even without impurity seeding
- High density strengthens ITB & reduces edge pedestal \rightarrow smaller ELM risk
 - ELM damage ~ Peak ELM fluence ~ Pedestal pressure [Eich et al, NME 2017]

Density $\leftarrow \rightarrow$ Confinement Synergy Is Extremely Favorable towards a Core-edge Integration Solution

- High density reduces the temperature at divertor and wall
 - Experiment close to full detachment even without impurity seeding
- High density strengthens ITB & reduces edge pedestal \rightarrow smaller ELM risk
 - ELM damage ~ Peak ELM fluence ~ Pedestal pressure [Eich et al, NME 2017]
- Higher density Greenwald fraction can REDUCE external CD power, for fixed β_{N} target
 - Higher f_{Gr} → lower I_P, lower P_{fus}, and much lower auxiliary power are required to maintain ~constant electric power output

Coordinated Breakthroughs on DIII-D and EAST Overcome Long-standing Performance Limit, Show Path to High Confinement at High Density

Key physics: α -stabilization of turbulence, amplified by high density gradients

DIII-D data; 3600+ discharges

Coordinated Breakthroughs on DIII-D and EAST Overcome Long-standing Performance Limit, Show Path to High Confinement at High Density

- $\begin{array}{ll} \bullet & \text{Only path to sustained operation with } f_{Gr} > 1 \\ & \text{and } H_{98y2} > 1 \\ & \text{Ding et al, Nature 2024} \end{array} \end{array}$
- Only path to sustained operation with detached divertor and H_{98y2} > 1 Wang et al, Nat. Comm. 2021
- Only path for long-pulse H-mode on tungsten divertor (EAST, KSTAR) and high performance with strike point on tungsten ring (DIII-D)
 Gong et al, Nucl. Fusion 2024
- Only path achieving SS Q=5 & low-I_P Q=10
 Using day-1 H&CD in theory-based
 predictions for ITER
 McClenaghan et al, Nucl. Fusion 2020

59 NATIONAL FUSION FACILITY

Outstanding Challenges

- What determines the radius of ITB?
- Impurity transport (W inward, helium outward)
- RWM stabilization at low rotation
- Impact of collisionality
- Scenario access compatible with reactor constraints

