Plans to Develop Integrated Core-Edge-Wall Plasma Solutions for a Fusion Pilot Plant with DIII-D

by **RJ Buttery**

with thanks to many DIII-D colleagues

at the **IAEA Long-Pulse Technical Meeting**

Vienna

Oct 16th 2024

We Need to Pursue an Aggressive Path to Fusion Energy

- **Goal: Fusion energy in the 2030-40s**
	- –Low capital cost: test at tractable scale
- **Challenges: Critical science & technology**

"We do not as yet have a robust plasma configuration and scenario that will take us to commercial fusion" $_{\text{Cowley}}$

• **Need: Flexible research facilities to discover path**

How do we best use our facilities to close gaps and accelerate the fusion path?

- *Established teams able to rapidly implement solutions needed*
- *Proven track records and expertise for scientific delivery*

We must work together to meet the challenge

Compact Fusion Pilot Poses Critical Plasma Research

Compact scale requires higher power densities:

Ø **High pressure and energy confinement**

– To fuse sufficiently in compact device and retain heat for high gain

Ø **Power handling and wall compatibility**

- To mitigate hot plasma exhaust
- Ø **Plasma interacting technologies and control must be developed**

Drives research need

We need better solutions than we have now

Cost Drivers of a Fusion Pilot Plant Driven by **Cost Drivers** of a **Science and Technology**

- **Plasma questions are key cost drivers for fusion pilot plants**
	- *Vital to develop optimal solutions*
- **New technology research platforms also critical**
	- *Technology challenge driven by plasma solution*
	- –*Compatibility with core plasma a vital constraint*

Plasma research vital represent this analysis, the most important level the most important level the most important level the capital
This area on the capital the capital tender on reducing the capital tender on reducing the capital tender on r tal cost of a CTPP with the generic features noted earlier

An Integrated Solution Places Constraints on Each Element

- **Each element interacts with and poses constraints on the others**
	- *Impurities: wall* ßà *core & divertor*
	- *Pedestal-core* ßà *divertor heat flux*
	- *Transients* ßà *detachment & wall & core*
	- *Technology* ßà *core conditions*
- **Need solutions for each element**
- **Vital to test interaction of elements together**

Multiple research challenges that must be solved together

A Critical Challenge is Core-Edge Integration

• 24/7 divertor solution must eliminate erosion \rightarrow detachment

– But strongly dissipative techniques collapse the core:

A Critical Challenge is Core-Edge Integration

- 24/7 divertor solution must eliminate erosion \rightarrow detachment
	- But strongly dissipative techniques collapse the core
- **Resolution depends on complex physical** Bolometer (0. 177014 177018 **processes and requires innovation Radiative** – *What structures & geometries* **solution** *are required?* **Plasma pressure Magnetic geometry Radiators Collapses pedestal Physical structure** 3800 Time (ms)

Requires innovative divertor and core solutions in relevant regimes

'Integrated Tokamak Exhaust & Performance ' (ITEP) Gap Arises

• **Tension between:**

- High density radiative divertor solution
- High temperature high performance core

'Integrated Tokamak Exhaust & Performance ' (ITEP) Gap Arises

• **Tension between:**

- High density radiative divertor solution
- High temperature high performance core
- **Present devices tend to work** \rightarrow **between these regions**
	- To overcome must do both

'Integrated Tokamak Exhaust & Performance ' (ITEP) Gap Arises

• **Tension between:**

- High density radiative divertor solution
- High temperature high performance core

• **Present devices tend to work between these regions**

– To overcome must do both

• **DIII-D pursuing by**

- Shape, volume and current rise
- Heating & current drive rises

high pressure

- Advanced divertor & core configurations with relevant wall
	- Ø *Relevant physics regime for core-edge resolution*

Basis to develop integrated solution

DENSE EDGE Pilot Dissipative Exhaust (ionization, La, n-n or neutral penetration paths) Opacity Dissi *DIII-D Upgrade* **High performance 1/Collisionality HOT CORE**

Crucial Factor is the Wall

Crucial Factor is the Wall

- **Wall a crucial constraint on the plasma solution**
	- Must tolerate core scenario
	- Influxes influence, detachment, pedestal, core performance & stability, $\frac{1}{2}$

DIII-D carbon wall influences core radiation, outgassing & erosion – *Time to confront this* è *DIII-D moving to W wall in 2027*

-
- **Adapt DIII-D develop scenarios for W environment,**
	- Benefiting from key mitigations in core, pedestal & divertor
- **Test innovative new materials without carbon**
	- Better solutions needed than tungsten
- **Resolve integrated core-edge-wall-technology solutions**

Tungsten will provide a new context for DIII-D to close gaps to a fusion reactor

DIII-D Program Focuses on U.S. Priorities for Low Capital Cost Fusion Pilot and ITER

- ü **The Plasma Research Challenge**
- **Hardware Upgrades to Close the Gap**
- **Meeting the Challenge**

New Shape Volume & Current Rise Divertor Raises Pressure, Density and Opacity to Confront Core-Edge Challenge

- **Raise divertor opens large expanse in operational space**
	- Raises **pressure** and **density** access
	- Increases **opacity** & lowers **neutral penetration**
		- *Gradients become transport-defined, like FPP, rather than by neutral deposition*

Pedestal density (10²⁰m⁻³)

Removed inner cryopumps to permit extreme triangularity & volume rise

New Shape Volume & Current Rise Divertor Raises Pressure, Density and Opacity to Confront Core-Edge Challenge

- **Raise divertor opens large expanse in operational space**
	- Raises **pressure** and **density** access
	- Increases **opacity** & lowers **neutral penetration**
		- *Gradients become transport-defined, like FPP, rather than by neutral deposition*
- **Increases scope of pedestal exploration**
	- **Conventional pedestals: Low collisionality & high opacity** with high energy, pressure & density
	- **More advanced pedestals: Scope limits of performance**
		- **& dissipation** through shaping & control techniques

Basis for core-edge integration & resolving reactor pedestal science

rise

New Shape Volume Rise Divertor Commissioned, Model Validation and Scenario Development Underway

ITEP

- **Divertor pumping calibrated, diagnostics commissioned**
- **Optimizing plasma shaping, divertor interaction & shot trajectory**
	- $-$ Low v^* front end, avoiding core MHD
		- *but presently ballooning limited*
	- Wide Super-H channel predicted
	- Profile structure important → *optimization planned for experiments later this month*

Poised to explore limits with this new tool

Increased Heating & Current Supports High Density and Temperature for Core-Edge-Wall Integration *ITEP*

> **7MW ECH: directable electron heating or current drive, without fueling or torque**

> > **20MW NBI with RF sources bulk heating & current drive, on/off axis, toroidally steerable**

Experimental Studies of Helicon Wave Excitation, Propagation, Damping and Current Drive on the DIII-D and LAPD Devices

New helicon current drive installed & testing

New HFS LHCD installed: testing in 2025

Enables: x3 energy, x2 density, ni Ti t **~ 2E20, q||~ 10GW/m2**

H&CD Upgrades Will Enable DIII-D to Close Gaps on Reactor-Relevant Core-Edge Integration

Thursday

- **Integrated physics simulations identify** 80 0.3 **high performance solutions** 40 ntify
	- 2.2T, 2.5MA, 16MW NBI + 7MW EC
		- Higher freq EC accesses n_e \rightarrow 14x10¹⁹
- **Project low-collisionality at high density** 0.8 **with conventional pedestals** 0.6 y at high d<mark>ensit</mark>y ensity $1.0\frac{L}{L}$
	- $-$ Low neutral penetration depths at low v^* n depths at low
	- Highest density while still peeling limited 100
	- $-$ Thermalized $T_e \sim T_i$ cores
	- $-$ ~30% of pilot plant q \overline{q}_{\perp}
- **Advanced pedestals through shaping** 4 10 optimization could go further ⁵ ¹⁰ ¹⁵ ²⁰ ⁰ 20 ough shapin ⁵ ¹⁰ ¹⁵ ²⁰ ⁰

H&CD Upgrades Will Enable DIII-D to Close Gaps on Reactor-Relevant Core-Edge Integration

- **Integrated physics simulations identify high performance solutions**
	- 2.2T, 2.5MA, 16MW NBI + 7MW EC
		- *Higher freq EC accesses* $n_e \rightarrow 14 \times 10^{19}$
- **Project low-collisionality at high density with conventional pedestals**
	- $-$ Low neutral penetration depths at low v^*
	- Highest density while still peeling limited
	- $-$ Thermalized $\sum_{i=1}^{\infty}$ Cores
	- $-$ ~30% of pilot plant q $_{\perp}$
- **Advanced pedestals through shaping optimization could go further**

 λ_{mfp}

FPP (CAT)

New Heating and Current Drive Enables DIII-D to Explore Candidate Power Plant Core Solutions

⁰ Normalized radius ¹

Spectrum of plasma regimes

– From broad to peaked currents, & high bootstrap to driven currents

New Heating and Current Drive Enables DIII-D to Explore Candidate Power Plant Core Solutions

Spectrum of plasma regimes

– From broad to peaked currents, & high bootstrap to driven currents

ECH & NBI provide scope to explore solutions and address key physics:

Performance (β)

Wall mode kinetic damping & fast ion instabilities vs. current profile

Burning Plasma Conditions ($\Omega T_e/T_i P_{ei}$) **Turbulent transport & kinetic effects with coupled e– ions & low rotation**

High density and power to understand impurity and core-edge optimization

Addresses critical science & tests solutions to retire risks for FPP core

New "Chimney" Divertor Concept will Resolve Key Physics & May Offer Improved Divertor Solution Divertor

Longer leg

- Isolates physics for model validation
- Avoids X point degradation

"Chimney" design improves detachment

– **Mid-leg pump** stabilizes radiation front at duct

New "Chimney" Divertor Concept will Resolve Key Physics & May Offer Improved Divertor Solution

Longer leg

- Isolates physics for model validation
- Avoids X point degradation

"Chimney" design improves detachment

– **Mid-leg pump** stabilizes radiation front at duct

Divertor

SOLPS predicts cold dense target & hot X with good stability

Test key principles behind divertor design

New Tungsten Wall Provides Opportunity to Close Key Remaining Gaps with DIII-D

• **Removal of C provides key opportunities**

- C predominant radiator resolve extrinsic radiator strategy
- C fuel retention governs detachment bifurcation
- C provides too forgiving wall resolve compatible solutions

• **Change to W develops solutions with relevant radiators**

- Exploit DIII-D flexibilities & ECH to mitigate challenge
- Use of other radiators to optimize strategies

• **DIII-D complementary to other facilities**

- **Core-edge solutions:** shape, profile, divertor & NT flexibility
- **High** b **steady state:** advanced tokamak configurations
- **Model validation:** Large diagnostic suite
- **Innovative materials & technology testing**

Expertise and advice of community appreciated

Carbon sputtering

Metal Wall Removes C as Dominant Sputtering Source of High-Z and Eliminates Mixed-Material Uncertainties

- **Decoupling C co-deposition from retention studies in DiMES fusion material samples**
	- Enabling more insight into performance of various wall material fabrication routes
- **Large investments in flexible wall conditioning capabilities prepares DIII-D to address key questions for ITER and FPP with metal wall**

* from Roth PPCF 2008

Basis to develop more advanced wall solutions

DIII-D Accelerating Program to Test Reactor Technologies Charles

• **DIII-D brings key characteristics necessary**

- **Flexibility**, diagnosis, relevant regimes, integration
- **Swap out components rapidly & often**
	- Much harder in activated or tritiated devices
- **Assess with relevant solutions** for wall divertor & core
- **Technology Group spans 1/3rd of DIII-D program**
- **Platform approach with rapid facilitated access**
	- Materials, control, diagnostics, components
- **Pursuing key innovative techniques**
	- Disruption mitigation: pellets & passive coil
	- Helicon & HFS-LHCD RF
	- Spin polarized fusion

Passive runaway coil

RJ Buttery/IAEA-TM-LP-2024/27

HFS-LHCD

Proven track record

Materials interactions

- Explore degradation
- Understand transport
- Assess divertor leakage

Studies of W & ELM behavior, and new materials

DIII-D Engaging Private Industry to Accelerate Commercialization :elei *I* p

Partnership approach with workshops and six companies on our PAC show scalar signals; the next two shows the next two showed signals; and the bottom profile signals; and the bottom \sim σ disputes successive succession, corresponding to the spike spikes in the output spikes in

Point Colli-D is the key facility to support private industry engagement predict the disruption hundreds of milliseconds in advance; this is missed

and the resulting alarms. **b**, JET shot 83,413: the slow rise in radiated

Negative Triangularity May Provide Alternate Transformational Solution for Fusion

Core Divertor Transients Wall & Technology *ITEP*

- **Negative Triangularity give high confinement with low power to divertor and no ELMs**
	- DIII-D changed hardware to test diverted 'NT'
		- *in just two weeks!*
	- Exciting results with great confinement & stability
- **New closed pumped NT divertor will combine with ECH upgrade to close remaining gaps**
	- Core-edge integration: detachment with high performance core
	- Assess AT and wall compatibility

Negative Triangularity could upend the tokamak concept !

Cryo-pumped full closed NT divertor

DIII-D Program Focuses on U.S. Priorities for Low Capital Cost Fusion Pilot and ITER

- ü **The Plasma Research Challenge**
- ü **Hardware Upgrades to Close the Gap**
- **Meeting the Challenge**

Hardware Upgrades Close Gaps in Timely Manner

- **Closes 'ITEP' core-edge-wall integration gap by 2030**
	- Integrates power rise, wall and innovative divertors
- **Addressing multiple critical gaps on limits, physics & solutions**

Important contributions in an international context

Working Collaboratively We Can Close the Key Gaps to a Fusion Pilot Plant

Develop techniques at high power density

- **Flexibility to resolve & integrated innovative exhaust, core and wall solutions**
- **High opacity, low** n***, high performance, burning plasma relevant conditions**
- **Physics basis to project**

Long pulses test evolution & wall

• **Material & PFC evolution**

Larger devices test scaling

- **Projection to reactor**
- **Operational techniques**

Key physics & novel techniques

JET

JT-60SA

- **Aspect ratio & Shape**
- **Extreme divertor geometry**
- **Super Alfvénic ions & high** b

ASDEX Upgrade • Liquid metals

Working Collaboratively We Can Close the Key Gaps to a Fusion Pilot Plant

Develop techniques at high power density

- **Flexibility to resolve & integrated innovative exhaust, core and wall solutions**
- **High opacity, low** n***, high performance, burning plasma relevant conditions**
- **Physics basis to project**

<u>IImely answers to crucial questions</u> • **Projection Existing facilities well placed for**

Long pulses test evolution

- **Material & PFC evolution**
	- **Long pulse WEST control**

- **to reactor**
- **Operational techniques**

Key physics & novel techniques

- **Aspect ratio & Shape**
- **Extreme divertor geometry**
- **Super Alfvénic ions & high** b

ASDEX Upgrade • Liquid metals

elevance Relevance **DIII-D** $\breve{\sim}$ **Flexibility**

SPARC

DTT

Reactor

Reactor

CFETR & BEST

Higher field: nuclear & burn

- **Core-edge demonstration**
- **Nuclear testing**

DIII-D Being Redeveloped to Confront the Challenge of a Rapid Path to Fusion Energy

- **Move to tungsten enables DIII-D to address key remaining gaps**
- **Strong facility flexibilities to confront the challenge**
- **Testbed approach to enable rapid path from fusion customers**
- **Strong focus on workforce & early career development**

Work with international partners is key

ADDITIONAL REFERENCE SLIDEs:

DIII-D Reduced the Barrier to Entry for Industry Partners

- **Non-proprietary User Agreement provides free access to the DIII-D Research Program in a process that can be completed in a single day**
- **Strong initial uptake leading to continued growth in industry participation**

ECH Rise Provides Crucial Capability to Resolve Transient Control in Relevant Regimes

Transients

- **Context:** *& collisionality 'peeling' pedestals to resolve integrated scenarios* **and Enables Increased 3-D Spectral Flexibility** • **ELM control:** *ECH rise provides unique access to relevant low rotation*
	- **Super-supplies can power 2-D** *and* **3-D coil** • **Can ELM-controlled 3-D core be coupled to** – **Resonant 3D field ELM suppression** with flexible coil arrays
	- **more advanced divertor geometry? QH and other benign ELM regimes:** resolve controlling edge **Approach:** physics & ExB rotation requirements with flexible profile control
	- **Use 1st supply for 2-D, 2nd supply for 3-D Pellet pacing:** sufficient triggering and heat reduction
- **Plasma control:** ECH rise provides unique headroom though • **2nd supply also designed to power M-coil** – …or to power fully independent I-coils a*-like electron heating, precise deposition & profile control*
	- **Burn simulation & control** with FPP-like actuator and measurement constraints **COM**
	- **Tearing mode control** via direct island deposition or profile control
	- **Disruption avoidance:** Machine learning, faster-than-RT simulation, sensing
		- *Digital twin develops robust schemes offline for testing online*

DIII-D the key proving ground to resolve tokamak control & the non-linear multiscale physics of MHD phenomena

DIII-D planning to move to metal wall: resolving key coreedge integration challenges

- **Opportunity to evaluate how of various DIII-D scenarios change with high-Z walls**
	- At a high level, compatibility/access
	- Toleration of radiative losses from high-Z impurities (stability, confinement)
	- Excellent diagnostics support model validation in a broad range of conditions
- **Development of new control techniques to maintain/recover lost performance**
	- Core ECH, ELM control, etc.

2027

Moving to metal walls enables better understanding of divertor 2027 detachment and integration

- **Removing carbon provides direct control of radiating impurities**
	- C strong radiator, even with seeding
	- C sourcing impacts detachment access and dynamics
- **Stable/robust detachment scenarios with extrinsic impurity injection, e.g. XPR**
- **Evaluate W sourcing and leakage with extrinsic radiators**

New Tungsten Wall in 2027 Will Enable Integration of Reactor Relevant Materials into Core-Edge Challenge

- **Crucial because of interactions with core and divertor**
	- **Material behavior with fusion-relevant plasma distributions**
		- *Without C-induced erosion*
	- **Scenarios with relevant impurity transport and radiation**
		- *Reduce carbon radiators to study radiative optimization*
		- Increased ECH \bigoplus *edding can control impurity accumulation*
	- **Changeouts to test different materials & components are easy**
		- *Materials choices taken with US community*
- **Combine with other DIII-D material testing capabilities to assess key PMI physics & novel materials**

Toroidal limiters test novel new materials & resolve SOL models for FPP wall design

Tests new materials and their interaction & compatibility with the core

International Complementarity Examples **Long pulse development builds from DIII-D developed solutions**

- **Flexibility to develop scenarios**
	- Improved transport
	- Alleviated ELMs
	- Mitigated heat flux

DIII-D Superconducting

- **Extend to long pulse**
	- Stability & wall compatibility
	- Heating and current drive
	- Long pulse evolution

Strong collaboration with long pulse partners

- **Diagnose physics**
- **Reactor-relevance**
	- High power & pedestal P
	- High neutral opacity
	- Recycling
- **Detachment control**
- **Core-edge integration & AT**

DIII-D MAST-Upgrade

• **High closure**

+

- **Extreme flexibility**
	- Long radial leg length
	- Large flux expansion
	- Reduced upstream density
- **Test models of plasma- molecular reaction**

Italian DTT

- **Closer to FPP parameters**
- **Flexible divertor and plasma shape, but less core operational range**
- **Limited access (activated)**
- **Fully operational mid 2030s**

Holistic physics basis for divertor research

Distinctive Technical Contributions

- **Ramp up & early phases**
- **Transients and control**
- **Robust scenarios to deliver burn goals**
- **Physics to interpret & optimize performance**

Programmatic Role for US in ITER

- *U.S.'s ITER simulator*
- *Train the team*
- *Develop techniques & codes on DIII-D* à*Validate in ITER*
	- à*Bring learning to FPP*

- **Profile and shape**
- **Low collisionality with high opacity**
- **Thermalized low rotation**
- **Solid divertor solutions & physics for projection**

DIII-D NSTX-U

- **Aspect ratio**
- **Beta & bootstrap limits**
- **Superalfvénic fast ions**
- **Liquid metal PFCs & power handling**

Broaden physics basis & provide more options for FPP

Basis of Approach

Controlling variable

Access the right physics regimes to develop projectable solutions

New Technologies Being Pioneered to Resolve Safe Quenching of Disruptions

SXR brightness vs time; and (k) inferred pellet velocity.

RF Rises Provide Critical Properties to Close Reactor Gaps REWORK THIS FOR LATEST SIMULATION

RJ Buttery/IAEA-TM-LP-2024/47

 $\frac{1}{\sqrt{2}}$

With Higher *B***T, Plasmas with High Greenwald Density Fraction (nped/nGW ≥ 1) can be Accessed by ECH**

Modeled ECH density limit assuming plasma current scales to 2 MA at 2.5 T

ECH at 2.2 T

Flexible Multi-Frequency (110/137/170 GHz) Gyrotrons Would Cover Whole Range of B_T in a

Negative Triangularity divertor design activity: improving detachment and core/edge integration

- **NT shows attractive route to performance and edge stability, but detaches at higher density than PT and degrades confinement**
- **New divertor design with changes in equilibrium, closure and pumping enable:**
	- Access to divertor dissipation at lower ne
	- Limit confinement degradation after detachment
	- Particle control

SOLPS ITER showing detachment at lower upstream density

Vital to Develop Validated Physics Understanding Measurements Validate Models of Divertor Dissipation

- **Comprehensive, cutting edge diagnostics resolve key science**
- **Over 20 theory groups and 70 codes engaged for validation**

C

Example: Role of drifts in detachment

- *Combine 2D EUV/VUV* & *Thomson data*
- è *Drifts critical to predict detachment*

Core Requires High Performance Solutions

- **Steady state:** Naturally improves stability & transport through **shaping**, **profiles** & **high** b
	- Ø *Lower current, self-driven solutions, decreasing loads & risks, sustainable noninductively*
	- Ø *Need to validate projected solutions*
- **Pulsed:** High confinement with **high plasma current** Ø *Potentially increased instability, heat & stress* Ø *Can stability be maintained?*
- **Must also resolve compatibility of scenario with divertor, wall and transient solutions**

DIII-D has unique profile and shape flexibility to resolve core

A Key Strength DIII-D Brings is Workforce Development

• **DIII-D an early career development center**

- **Leadership**: science, XPs, talks, papers, systems, PIs
- **Mentorship program**, training, summer school
- **Over 250 students, postdocs & interns** with PhD runtime & student support groups
- **Diversifying pathways**
	- **Under-represented groups:** internship programs, community college engagement, SDSU
	- **Next generation:** Local schools, girls Tech Trek, CuWiP, Young Women's STEM, Society of Women Engineers
- **Addressing workplace environment & opportunity** *Invested in APS climate survey yielding major insights*
	- **Environment:** code of conduct, community agreements, webinars, civil treatment, bystander & meetings trainings
	- **Open opportunities policies** with balance monitoring & double-anonymized deconflicted XP review to combat bias

Seeking an enabling environment for all

Prof. Livia Casali, Early Career Award "Innovative Core-Edge Solutions for Tokamaks" Co-lead DIII-D Core-Edge Task Force Professor at UT Knoxville

A. Rosenthal DOE Highlight MIT PhD

FPP Mission Will Broaden Reach on Workforce Development

- **Expanded topical scope in technology & science will help us diversify pathways further**
	- Invited to join new "Pathways" program for MSIs
	- Facilitate development with private sector
- **New User Board energizing workforce development with 5 new bodies being formed:**
	- UB Council Personnel Development Nominations
		- Data & Access DEIA Council
	- Plan to provide specialist training and Ally program

- **Apprenticeship center for engineers and technicians proposed**
	- DIII-D the ideal place with high range of roles and many institutions engaged

DIII-D will provide powerful development & preparation of the fusion workforce

ELMs and Disruptions Must be Mitigated to Avoid Damage to Plasma Facing Components **Accile Superfact Law Age Conference I**

- **ELMs: Require benign-ELM core scenarios**
	- Through profile & 3D manipulation tools
- **Disruptions threaten structural integrity**
	- **First line of defense: stable controlled core**
	- **Mitigation systems are a vital fallback**

Fig.3 Snapshots of the temperature and density during the ELM at t=0.36ms, t=0.45ms and t=0.66 ms. solutions neededTechnology & physics

DIII-D unique flexibility in actuators to solve these problems

Wall and Reactor Components Pose Crucial Challenge for an Integrated Solution

- **Survivability & functionality need to be tested in relevant plasma conditions**
	- And impact and constraints on core fusion plasma
- **Development of FPP-compatible techniques is required**
	- *Fewer, simpler systems, hands-off, radiation-hard*
		- è*Neutron, heat & particle fluxes, temperatures, stress, space, 24/7*

DIII-D can rapidly change out components & assess relevant interactions

Plasma Research Gaps Called out in CPP and FESAC Long Range Plan Reports (Reference slide)

DIII-D Upgrade Provides Unique, Vital Capabilities

• **Key capabilities that will not be available elsewhere**

- **Change out wall, divertor, materials and components readily and often** to assess wide range of new technologies and approaches in fusion-relevant conditions
- **Core configuration flexibility** with on & off axis H&CD & shape actuators to identify viable pulsed & steady state cores compatible with wall, divertor and transient solutions
- **Scientific foundations to adapt solutions for the FPP** through comprehensive diagnostics and outstanding flexibility
- **Critical control tools** for tearing, ELMs, disruptions, impurities & burning plasma simulation
- **Integration** of technical solutions developed on these fronts
- **User facility model a crucial strength, levering dozens of groups across the US**

Fundamentally, we need a facility that can *discover* **a viable approach &** *pioneer* **the science to project with confidence**

SPARC Cannot Solve All the Issues for ARC, and Represents a High Risk Path if the Only Tool

• **Things SPARC is not designed to do:**

- Focus on demonstration of predicted solution, rather than exploration to discover what works
- Change out materials & components to try different PFCs. Sample & technology testing.
- Steady state and advanced profile solutions or negative triangularity
- **SPARC has placed a series of bets on potential solutions that need to break the right way**
	- Divertor configuration. Wall solution. ELM coil set.
	- Neoclassical tearing modes can be avoided. Disruptions tolerable.
	- H/I mode access. Core impurity control. Energetic particle confinement

Critical SPARC limitations:

- No large scale replacements of wall structures (divertors, technology?)
- No snowflake divertor
- No tangential beams
- No ECH \rightarrow NTMs, impurities, burn control
- Limited advance tokamak capability; reliant on freeze-in
- No Neg T capability
- No lithium
- No pellets vet
- Limited diagnostic coverage

SPARC is a great facility that offers valuable data to de-risk the FPP. Should be part of the US plan and gain US participation. *But US must not bet the farm on SPARC generating all the answers.*

Isn't High field EXCITE (HFE) better? *Yes, No, and "its not necessarily a choice"*

- o **Yes** HFE is clearly nearer to FPP, and so would reduce risk in some ways with key data closer to FPP – though SPARC, ITER and DTT do that.
- o **No** because a HFE would become more activated, and so have less personnel access for changeouts and testing.
	- § *HFE will also take significant time to design and construct*
	- § *HFE will cost significant \$, which arguable should be prioritized to technology and milestone programs first.*
- o **"Its not necessarily a choice"**
	- § *Fastest way to HFE is to start on DIII-D upgrade now, as HFE can be built on DIII-D infrastructure*
	- § *Once/if mission need established, design and then construction can commence in Sorrento Valley, with systems being ported onto new machine*
	- § *Mission need will likely be determined in several contexts*
		- Results from milestone program
		- More specific FPP designs to identify specific tests needed.
		- Progress in international program (SPARC, JT60SA, NSTXU)
		- Attitude to risk for FPP path
		- Availability of funding, noting \$1-2Bn cost + \$1Bn exploitation.

DIII-D will close clearly needed gaps ASAP

HF-EXCITE need may emerge can cane be started if so

We should wait until we understand the path and the needs

o **The D3D plan targets urgent issues we know we need to solve:**

- § *Scientific questions that must be resolved behind many solutions*
- § *Techniques for core, divertor, transients and technologies that must be tested*
	- These are shared between tokamak concepts, and offer value for beyond tokamak concepts
- o **Any adjustment to research mission that emerges from SPARC, milestone program, FPP designs, etc., would build on this plan and be accelerated by it.**
	- § *The investments in ECH would not be wasted, as they represent a broad transformation in the relevance of investigative regimes, not in any one particular solution.*
	- § *Any research needs emerging later would build on this progress, and be accelerated by them.*
- o **The investments for DIII-D in this plan can be transferred to successor devices or rebuilds if further mission or configurations needs emerge.**
	- § *An upgrade is possible based on d3d infrastructure, as set out in other white papers.*
	- § *Present site credits are worth around \$700M, including presently funded development to 10 lines of ECH. Further investments in ECH, NBI and power infrastructure would add about \$260M to site credits.*
	- § *If you procure them now, they are ready sooner for such redirection*
- o **DIII-D has a highly adept team and provides the facility to train and keep those personnel at the forefront.**
- o **DIII-D will provide ongoing data needed to test and drive the development of theory and simulation**

Government funded projects are slow & error prone – don't build

- o **DIII-D has long track record of delivering substantial upgrades, including rebuild of key systems like neutral beams, and installation of new technology.**
	- § Delivered on time, with research campaigns also delivered every FY!
- o **This project does not need substantive in vessel construction or rebuild**
	- Installation of remote ECH systems with in vessel copper mirrors
	- § Based on designs already developed for lines 7-10

o *But why hasn't DIII-D raised ECH power sooner?*

- § Insufficient investments to maintain existing power levels and keep sockets filled § *US provider production failures played significant role*
- § We have changed to robust suppliers (Thales, Kyoto) with established track record, and started major overhaul of systems in 2021
	- *Now ready with nearly 4MW for 2024, and on track for 7MW in 202*

DIII-D Addressing Risks of an Aging Facility

- **Facility is operating well within established tolerances and lifetime, with no specific failures emerging or large downtimes in past 2 decades**
	- Many parts of system designed for higher field (not all)
		- *Significant design life margin in present operating conditions*
	- But 'unknown-unknowns' always a concern with an aging facility

• **System-wide assessment made to identify risk and mitigations**

- Pre-emptively replace components that could lead to larger failures (e.g. SCRs, flex straps)
- Put in place monitoring systems to check for potentially developing issues $\;\in$ no concerns yet (electrical connection, anti-torque structure, coil leads, water temperatures)
- Significant refurbishments possible, if they show signs of upcoming failure (e.g. joints)
- **Replace key systems that could lead to significant outages:**
	- Replaced cryoplant liquefier, failed I coils, MG2 cooling. Could replace compressor.
	- Upgrade investments would overhaul power systems and cooling as more power provided

DIII-D an Open User Facility with Shared Leadership Model

- **Three key decision-making scientific groups led collaboratively** (LLNL, ORNL, U. Wisc, GA)
	- Determine experiments, talks, papers, hardware and diagnostic priorities
	- 21 topical areas led by universities, Nat Labs & GA
		- *Developmental leadership opportunities*
- **Collaborative development of strategy**
	- Research plans, run time priorities, facility goals
- **Oversight by independent representative bodies**
	- **Overall Approach:** new User Board represents all institutions and PIs
	- **Long Range Research Strategy:** International Program Advisory Committee
	- **Near Term Priorities:** Research Council representative of user institutions

Research lines & projects determined with DOE-FES under Cooperative Agreement

Supporting the national program, enabling ~100 institutions to pursue their priorities with established user model

DIII-D-developed Integrated Physics Simulation Tools Utilized to Project Path To Pilot Plant (and DIII-D upgrades)

Integrated Simulation Example Point on ITEP Mission Based on 'Ready Now' Hardware

• **Based on 'ready to initiate' technology**

- 14MW ECH: ITER& Thales gyrotrons, outside launch
	- *12 lines 3rd harm 170GHz, 8 lines 2nd harm 137GHz cutoff 17E19*
- 20MW beams. Present field.

• **Combined key performance and opacity qualities for integrated solution exploration**

- Neutral pedestal penetration a fraction of pedestal width
- Low collisionality matching 'CAT' FPP
- Thermalized low rotation core with $T_e \sim T_i$
	- *Trade-offs possible in density, q95,* b*, etc.*

Higher power, top launch, LHCD, helicon or higher field would go further or cost less (but not assumed)

With ECH upgrade, DIII-D in right zone to resolve core-edge FPP solutions

Details of Divertor Parameters

• **Performance rise places DIII-D in the relevant regimes for key divertor processes**

- Assess key physical mechanisms (e*.g. broadening)*
- $x3$ in dimensional space \rightarrow test over significant range

Key Divertor & Core-Edge Physics:

- **Lyman** a**:** photon trapping
- **Ionization length:** neutrals paths compared to divertor structures
- **Recombination/ionization:** governs proportion of neutrals at the edge
- **Fluidity:** divertor becomes more fluid
- **Turbulence broadening:** radial gradients drive turbulence in SOL

Relevant regimes to explore FPP divertor physics

Working Collaboratively, We Can Close the Key Gaps to an FPP

- *Flexibility to pioneer solutions*
- *Resolve science to project them*
- *Test behavior close to FPP parameters*
- *Proof of high field tokamak approach*

RJ Buttery/IAEA-TM-LP-2024/70 *Collaborative engagement a key feature of DIII-D program*

ADDITIONAL REFERENCE SLIDEs:

Additional technical data

