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We Need to Pursue an Aggressive Path to Fusion Energy

« Goal: Fusion energy in the 2030-40s
—Low capital cost: test at tfractable scale

* Challenges: Critical science & technology

“We do not as yet have a robust plasma configuration
and scenario that will take us to commercial fusion” cowley

* Need: Flexible research facilities to discover path

How do we best use our facilities to close gaps
and accelerate the fusion path?

— Established teams able to rapidly implement solutions needed
— Proven track records and expertise for scientific delivery

DIl-D We must work together fo meet the challenge

IONAL FUSION FACILITY
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Compact Fusion Pilot Poses Critical Plasma Research

Compact scale requires higher power densities:

> High pressure and energy confinement 0

700k

—To fuse sufficiently in compact device ool Pulsed
and retain heat for high gain FPP.
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We need better solutions
than we have now
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> Power handling and wall compatibility
—To mifigate hot plasma exhaust

Pressure
»
8

Drives research need

DII-D
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Cost Drivers of a Fusion Pilot Plant Driven by

Science and Technology

Confinement

Tritium Breeding Multiplier|

* Plasma questions are key cost
drivers for fusion pilot plants
—Vital to develop optimal solutions

Thermal Efficiency
Divertor flux

Neutron Wall Loading (MW/m?)
Pulse length
Density

TF Bucking Solution

* New technology research
platforms also critical

—Technology challenge driven
by plasma solution

Magnet Type|
Stability
Reactivity Multiplier|

CD efficiency

Tritium Processing Time (hr)

Blanket Power Multiplier|

— Compadtibility with core plasma

a vital constraint
Plasma research vital
to FPP design
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An Integrated Solution Places Constraints on Each Element

* Each element interacts with and poses
constraints on the others
—Impuirities: wall €= core & divertor
—Pedestal-core €= divertor heat flux
—Transients €= detachment & wall & core
—Technology €<-> core conditions

 Need solutions for each element

* Vital to test interaction of elements together

Multiple research challenges
that must be solved together
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A Critical Challenge is Core-Edge Integration

« 24/7 divertor solution must eliminate erosion > detachment
—But strongly dissipative techniques collapse the core:

Bolometer (0. 15 MW/m?) 77014
~— /

| Radiative
ﬂﬁ solution
T

177018
Y

Collapses
pedestal

Plasma pressure
(kPa)

2600 2800 3000 3200 3400 3600 3800 4000
Time (ms)

DII-D
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A Critical Challenge is Core-Edge Integration

« 24/7 divertor solution must eliminate erosion > detachment
—But strongly dissipative techniques collapse the core

* Resolution depends on complex physical [;;5,; Bolomeler 0, T5MW/MT] 1770,
] )

processes and requires innovation ~ | Radiative
ﬁ_ﬂ | solution

/

—

—What structures & geometries
are required? -

Magnetic
geometry

Plasma pressure
(kPa)

Radiators ,

Collapses
Physical pedestal
StrUCture o 2600 2800 3000 3200 3400 3600 3800 4600

Time (ms)

[:]/// s * B Requires innovative divertor and core solutions in relevant regimes
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‘Integrated Tokamak Exhaust & Performance * (ITEP) Gap Arises

* Tension between:

— High density radiative divertor solution : /Pg i Pilol*
— High temperature high performance core “ "g_ g
>i |5 &
E i
vt a ITEP
Q° a
o gap
High
B performance
>~

Ll
1/Collisionality HOT
CORE

bi-o ITEP
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‘Integrated Tokamak Exhaust & Performance * (ITEP) Gap Arises

* Tension between: m

~ High density radiative divertor solution ez Pilor*
— High temperature high performance core “ g_ g
g X
. >i | o\
- Present devices tend to work & 112 ITEP
between these regions a: gap
o €

—To overcome must do both &)

5 Present High

performance
~

Ll
1/Collisionality HOT
CORE

bi-o ITEP
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‘Integrated Tokamak Exhaust & Performance * (ITEP) Gap Arises

* Tension between: m

— High density radiative divertor solution : ’%_2 i P"OT*
— High temperature high performance core “ g_ _g
£ X
. ¢ ‘n \w!
* Present devices tend to work Sl = DIlI-D
3 o
between these regions a: —\ Upgrade
—To overcome must do both O3
DIII-D ing b liz
- pursuing by B performqnce\

—Shape, volume and current rise }high

7
— Heating & current drive rises pressure 1/Collisionality
— Advanced divertor & core configurations with relevant wall CORE

» Relevant physics regime for core-edge resolution

Basis to develop integrated solution
DI-D 2 ITEP

L FUSION FACILITY
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Crucial Factor is the Wall

* Wall a crucial constraint on the plasma solution
— Must tolerate core scenario

11111

DII-D
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Crucial Factor is the Wall

* Wall a crucial constraint on the plasma solution
— Must tolerate core scenario

DIlI-D carbon wall influences core radiation, outgassing & erosion
—Time to confront this = DIII-D moving to W wall in 2027

« Adapt DIlI-D develop scenarios for W environment, IR
- Benefiting from key mitigations in core, pedestal & divertor i

 Test innovative new materials without carbon oy Tl
— Better solutions needed than tungsten

» Resolve integrated core-edge-wall-technology soluﬂorjs,f

Tungsten will provide a new context for
DIlI-D to close gaps to a fusion reactor

DII-D

L FUSION FACILITY




DIlI-D Program Focuses on U.S. Priorities

for Low Capital Cost Fusion Pilot and ITER

v" The Plasma Research Challenge
* Hardware Upgrades to Close the Gap

* Meeting the Challenge

RJ Buttery/IAEA-TM-LP-2024/13



New Shape Volume & Current Rise Divertor Raises Pressure, ITEP

Density and Opacity to Confront Core-Edge Challenge
- Shape & Current Rise @2.1T
Preseni

(129)
Shape

Volume &

* Raise divertor opens large expanse
in operational space
— Raises pressure and density access
—Increases opacity & lowers neutral penetration

» Gradients become transporf-defined, like FPP,
rather than by neufral deposition

Pedestal Pressure By

"w, Pedoéssial aens}:y(1o§0m—3)

o Removed inner e

u / [T cryopumps to

i ; _ permit extreme
' & triangularity &

volume rise

Pedestal Pressure 3y

Dill-D Pedestal density (10°m?)
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New Shape Volume & Current Rise Divertor Raises Pressure, ITEP

Density and Opacity to Confront Core-Edge Challenge

* Raise divertor opens large expanse
in operational space
— Raises pressure and density access
—Increases opacity & lowers neutral penetration

» Gradients become transporf-defined, like FPP,
rather than by neutral deposition

Present

Shape
Volume &
Current

* Increases scope of pedestal exploration

— Conventional pedestals: Low collisionality & high opacity
with high energy, pressure & density

— More advanced pedestals: Scope limits of performance
& dissipation through shaping & conftrol techniques

Basis for core-edge integration &
resolving reactor pedestal science
DIlI-D . e

FUSION FACILITY
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Pedestal Pressure By

Pedestal Pressure 3y

Shape & Current Rise @2.1T

Collisionality;
((29)
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0
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New Shape Volume Rise Divertor Commissioned,

Model Validation and Scenario Development Underwqy

+ Divertor pumping calibrated,

diagnostics commissioned N \
. 0] ° o . . ped [ ;. 8B

ppilmlz!ng plasma sr.iaplng, divertor i : SVR Equilrom

interaction & shot trajectory 1 & Old SH Profiles

— Low v* front end, avoiding core MHD
» but presently ballooning limited

— Wide Super-H channel predicted o . ;

— Profile structure important — optimization
planned for experiments later this month
B ne,ped (]OZOmVSJ

Poised to explore limits
with this new tool . .

D”’-D 0.8 djn 0.9 1

. SH profile

0 0.2 04 06 08
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Increased Heating & Current Supports High Density

and Temperature for Core-Edge-Wall Integration

7MW ECH: directable electron heating
or current drive, without fueling or torque

20MW NBI with RF sources
bulk heating & current drive, =" 0
on/off axis, toroidally steerable [ — i

HFS-LHCD

New helicon current drive | % New HFS LHCD installed:
installed & testing =% b & testing in 2025

RJ Buttery/IAEA-TM-LP-2024/17



H&CD Upgrades Will Enable DIlI-D to Close Gaps ITEP

on Reactor-Relevant Core-Edge Integration

+ Integrated physics simulations identify InTegroOT?d Physics Simulation

high performance solutions :z / e 7
— 2.2, 2.5MA, 16MW NBI + 7MW EC w v
* Higher freq EC accesses ne=>14x10'° 20 . o /
- Project low-collisionality at high density B A
with conventional pedestals Zz . 112 -
— Low neutral penetration depths at low v* 04 / " \
— Highest density while sfill peeling limited :i 03
— Thermalized T¢~T; cores 3.0 e 23 T
— ~30% of pilot plant gy 20 e thermalized
+ Advanced pedestals through shaping 1.0 21 \- \
optimization could go further 00 ?80=§5%:\:'pe‘d3_05 o IPS-FASTRAN

N, e (109/M°)

DINI-D See Holcomb
SN RJ Buttery/IAEA-TM-LP-2024/18 Th UrSd ay




H&CD Upgrades Will Enable DIlI-D to Close Gaps ITEP

on Reactor-Relevant Core-Edge Integration

- Integrated physics simulations identify e o di Retlevant
high performance solutions FPP(CAT). b p;:;i:cc;r:;;zg
~2.2T, 2.5MA, 16MW NBI + 7MW EC ol N length o ntegrated
* Higher freq EC accesses ne—>14x10'° b ; et eSeparately
- Project low-collisionality at high density 9 plii-D Upgrade
with conventional pedestals Turbulence ™ Fluidity
b d i fotey) (v )
— Low neutral penetration depths at low v* roadening frl _ Confinement FPP (CAT)
— Highest density while sfill peeling limited T Bootstrap

— Thermalized T¢~T; cores /ﬁw

— ~30% of pilot plant g e heating fthagiO%n
C/Vg=

+ Advanced pedestals through shaping
optimization could go further Doty Fast ions
ow=1

fi
Relevant physics metrics to resolve core
DIll-D and divertor solutions for reactor See Holcomb
NATIONAL FUSION FACILITY Thursdqy
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New Heating and Current Drive Enables DIII-D to

Explore Candidate Power Plant Core Solutions

Spectrum of plasma regimes Regime | Strength Challenge "I \\Peaked Current
=5 pofential;  Fastion it | ., Densi

— From broad to peaked currents, Broad  f e umviy  wallmodes | | Hybrid ty
& high bootstrap to driven currents Hybriq ~Eficient CD, o] evolution | Broad

Good confine’'t  Sustainment;
Peaked no RWM Tearing. Disrupts

Normalized radius !

Dil-pD
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New Heating and Current Drive Enables DIII-D to

Explore Candidate Power Plant Core Solutions

Spectrum of plasma regimes Regime | Sirength Challenge “I \Peaked Curent
=5 potential;  Fastion it | ., Densi
—From broad to peaked currents, Broad B0 Rty woll modes Hybrid ty
& high bootstrap to driven currents ; Efficient CD, Current evolution
9 P Hybrid Rolbtl.vsiness BNU limit Vo * Broad

ECH & NBI provide scope to explore |Peaked Seadfoninet Justenment
solutions and address key physics:

p | Performance (B) o :
ECH - . Wall mode kinetic damping & fast H&CD tools:
— : ' , ’ ion instabilities vs. current profile

Burning Plasma Conditions (Q T./T; P.))

Turbulent fransport & kinetic effects £
with coupled eions & low rotation Normalized radius

Core-Edge Integration (n, q)) See Holcomb,
High density and power to understand Thursday
impurity and core-edge optimization

oL FUSION FAGHITY Addresses critical science & tests solutions to retire risks for FPP core

‘ n 1

On/Off axis s
steerable ¥
beams




New “Chimney” Divertor Concept will Resolve %

Key Physics & May Offer Improved Divertor Solution
p

Longer leg
— lIsolates physics for model validation
— Avoids X point degradation

Recombination <~1eV

Do ionization
~5eV
Impurity

Radiation
V

R,ecombination
4

I:u/ionization ~5eV

Impurity

Radiation
/~1C-30eV

DII-D

TIONAL FUSION FACILITY
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New “Chimney” Divertor Concept will Resolve %

Key Physics & May Offer Improved Divertor Solution
p

Longer leg
— lIsolates physics for model validation
— Avoids X point degradation

Recombination <~1eV

Do ionization
~5eV
Impurity

Radiation
V

R,ecombination
7

I:u/ionization ~5eV

Impurity

Radiation
/~1C-30eV

“Chimney” design improves detachment
— Mid-leg pump stabilizes radiation front at duct

Chimney
Divertor

RJ Buttery/IAEA-TM-LP-2024/23



New “Chimney” Divertor Concept will Resolve %

Key Physics & May Offer Improved Divertor Solution

Recombination <~1eV

Do ionization
~5eV
Impurity

Radiation
V

Longer leg
— lIsolates physics for model validation
— Avoids X point degradation

R'ecombination
4
Lo
Do ionization ~5eV
Impurity
Radiation
/~1C-30eV

“Chimney” design improves detachment
— Mid-leg pump stabilizes radiation front at duct

SOLPS predicts cold dense target & hot X with good stability
150 g

14 Target 1 Yu PSI 2024

= ®, T -~
‘E’ 8 3 100
é . Pump duct | %
3 S
2 1.1 | SOLPS-ITER: stable X 5
e ] .
, 5 4 detachment o high Txot ~ Tsep
Chimney N Xepoint___|
. 0 - -
Divertor 09 0 1 2 3 0 1 2 3
Gas puff rate (1022 s71) Gas puff rate (1022 s71)

DilI-D Test key principles behind divertor design
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New Tungsten Wall Provides Opportunity to Close

Key Remaining Gaps with DIII-D

* Removal of C provides key opportunities 10°
— C predominant radiator - resolve exirinsic radiator strategy
— C fuel retention governs detachment bifurcation
— C provides too forgiving wall — resolve compatible solutfions

1074

1024

SPUTTERING YIELD (atfion)

1074

+ Change to W develops solutions with relevant radiators

— Exploit DIII-D flexibilities & ECH to mitigate challenge 10* o 50 oo

— Use of other radiators to optimize strategies ENEREY ()
 DIlII-D complementary to other facilities = “Ta D?:thmem c"ﬁ% —

— Core-edge solutions: shape, profile, divertor & NT flexibility = 22 ’-,'..; 'y 'ggm

— High B steady state: advanced tokamak configurations 8 T i V=

— Model validation: Large diagnostic suite - o 3-»0--;---\-\0-3- 4,

— Innovative materials & technology testing

DI-D Expertise and advice of community appreciated

RJ Buttery/IAEA-TM-LP-2024/25
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Metal Wall Removes C as Dominant Sputtering Source

of High-Z and Eliminates Mixed-Material Uncertainties

» Decoupling C co-deposition from retention 0\ .\
studies in DIMES fusion material samples
— Enabling more insight into performance of Deposited C layer ’
various wall material fabrication routes D/C~10"* o ®
* Large investments in flexible wall conditioning Dm_?r?s.l% ::.:::.:
capabilities prepares DIlI-D to address key
questions for ITER and FPP with metal wall * from Roth PPCF 2008

gg’:;:g'}aﬁ?&ps) Dispersoids Fiber-reinforced Plasma spray M'crﬁ';g?wed

Basis to develop more advanced wall solutions
Dil-D

TIONAL FUSION FACILITY
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DIII-D Accelerating Program to Test Reactor Technologies

DIII-D brings key characteristics necessary Proven frack record

— Flexibility, diagnosis, relevant regimes, integration %) Materials interactions

— Swap out components rapidly & often * Explore degradation

 Much harder in activated or fritiated devices * Understand transport
* Assess divertor leakage

— Assess with relevant solutions for wall divertor & core e <. ics of W & FLM behavior,
LEIVA ond new materials
- Technology Group spans 1/3d of DIII-D program
- Platform approach with rapid facilitated access Top launch ECH E «
— Materials, control, diagnostics, components Doubled current =« ek
drive efficiency 7 2 i
» Pursuing key innovative techniques , "o es oe s
— Disruption mitigation: pellets & passive coil N 5 Shattered Pellet Disrupfion Mitigation

- Helicon & HFS-LHCD RF HARERER { - Quench heat smsessee
e . . j‘::-j’e L & current !
Spin polarized fusion wnf;wqyco" s S Adopted by ITER

DIll-D Key capabilities that will qualify critical fusion technologies

NATIONAL FUSION FACILITY
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DIlI-D Engaging Private Industry to Accelerate Commercialization

« Industry research identifies significant need” IndusugExamples

—Solve challenges to reduce timescale & risk
» 50% of fusion companies want to use a user facility

% Materials Interactions

Tested SPARC wall material

— Key asks: ML, control, data, materials, diagnostics, plasma Py in fusion grade plasma
behavior, component testing, simulation, fraining, expertise PREEswl With 4 month furnaround!

facility.
« DIII-D program technology goals now align with NVIDIA & MS Hardware for Machine
private sector goals Legrning Di;rqpﬁon Prediction

. . Using DIII-D digital — FRNN1D
—>Enables full non-proprietary collaboration twin with deep ] FRNN 0D
learning & profile Qf;;old
* New user framework enables private sector to join measurement T—
— Protects private IP while sharing public IP 17 companies in process of joining up

— Provides support, training, expertise & shared leadership ~ including non-tokamak & non-fusion
— Partnership approach with workshops and six companies on our PAC

DIlI-D DIlI-D is the key facility to support private industry engagement

L FUSION FACILITY

RJ Buttery/IAEA-TM-LP-2024/28 “Survey of 22 fusion companies, D.C. Pace, MBA thesis



Negative Triangularity May Provide

Alternate Transformational Solution for Fusion

* Negative Triangularity give high confinement
with low power to divertor and no ELMs

- DIII-D changed hardware to test diverted ‘NT’ .
* in just two weeks!

— Exciting results with great confinement & stability

* New closed pumped NT divertor will combine
with ECH upgrade to close remaining gaps
— Core-edge integratfion: detachment
with high performance core
— Assess AT and wall compatibility

Negative Triangularity could
upend the tokamak concept!

RJ Buttery/IAEA-TM-LP-2024/29
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DIlI-D Program Focuses on U.S. Priorities

for Low Capital Cost Fusion Pilot and ITER

v The Plasma Research Challenge
v Hardware Upgrades to Close the Gap

* Meeting the Challenge

RJ Buttery/IAEA-TM-LP-2024/30



Hardware Upgrades Close Gaps in Timely Manner

Cy: 2024 2025 2026 2027 2028 2029 2030

& 4MW EC > rising to > & 7MW EC
+ 16MW NB # NB RF source
m + Shape Rise Divertor # ‘Chimney’ Divertor + Wall change (primary surfacesto W, ¢ Add’l wall elements

Secondary surfaces to TZM/plates) :
# Coupon & tile testing of new material # Lower Div Mat ‘B’

@ Upper Divertor Re-opt

# Helicon & HFS-LHCD & NT Armor Il mid or end of run e NT Divertor
4 DMS: li shell, sabot 4 DMS: gas gun, EM launch

@ Spin Po| Fusion

# Runaway Electron Coil

» Closes ‘ITEP’ core-edge-wall integration gap by 2030
— Integrates power rise, wall and innovative divertors

+ Addressing multiple critical gaps on limits, physics & solutions

Important contributions in

DIll-D an international context

NATIONAL FUSION FACILITY
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Working Collaboratively We Can

Close the Key Gaps to a Fusion Pilot Plant

Develop techniques at high power density

* Flexibility to resolve & integrated innovative
exhaust, core and wall solutions

 High opacity, low v*, high performance,
burning plasma relevant conditions

 Physics basis to project

Reactor
Relevance

Flexibility

Higher field: nuclear & burn

Long pulses test evolution & wall Larger devices test scaling

* Material &
PFC evolution

* Projection
to reactor

* HTS integration

. » Core-edge
-Long * Operational _ demonstration
ulse techniques )
P trol ot © Nuclear
conire testing

Key phy5|cs & novel techniques

+ Aspect ratio & Shape

» Extreme divertor geometry

. « Super Alfvénic ions & high B
1 ASDEX Upgrade » Liquid metals

Dil-pD

NATIONAL FUSION FACILITY



Working Collaboratively We Can

Close the Key Gaps to a Fusion Pilot Plant

Develop techniques at high power density
* Flexibility to resolve & integrated innovative
exhaust, core and wall solutions

 High opacity, low v*, high performance,
burning plasma relevant conditions

Reactor
Relevance

‘\
N . . :
o Phveire bhacic to nroiect

v o AP p— Flexibility
. es tost evolufi Existing facilities well placed for _ _
el timely answers to crucial questions  [EEICACEHITEEEE YT
= —— . PR SPARC I3 HTS integration

e * Materia: <

i PGS to reactor S
PFC evolution 0SA T/ a ' e ‘“’-’" - Core-edge
-long M + Operational 2 demonstration
S puise techniques v
' - Nuclear
control testing

Key physics & novel techniques
f + Aspect ratio & Shape
» Extreme divertor geometry




DIlI-D Being Redeveloped to Confront
the Challenge of a Rapid Path to Fusion Energ

* Move to tungsten enables DIII-D to address key remaining gaps
« Strong facility flexibilities to confront the challenge
» Testbed approach to enable rapid path from fusion customers

+ Strong focus on workforce & early career development

DIl-D Work with international partners is key

L FUSION FACILITY
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ADDITIONAL REFERENCE SLIDEs:

NATIONAL FUSION FACILITY
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DIlI-D Reduced the Barrier to Entry for Industry Partners

* Non-proprietary User Agreement provides free access to the DIlI-D
Research Program in a process that can be completed in a single day

« Strong initial uptake leading to continued growth in industry participation

JLEKsTE A nviDia

Dil-D Activities generalfusion J|digiLab [Ty
Long-Range Strategic Five-Year Research User Agreement
Vision Workshop Plan Completed Process Open to All ‘ 42X
X‘ \ M\ Additional Organizations
O Ny N4 Ny O > Reviewi g User Agr
2020 2021 2022 2023 2024 2025
e FESAC Long Range Milestone Program
DOE Activities Plan Released Aw;f:ees Annogunced
White House Summit DOE Fusion Energy
on Bold Decadal Vision Strategy Released

Dil-D Rapid, free, flexible-scope access in as little as a day

NATIONAL FUSION FACILITY
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ECH Rise Provides Crucial Capability to Resolve

Transient Control in Relevant Regimes

* ELM control: ECH rise provides unique access to relevant low rotation
& collisionality ‘peeling’ pedestals to resolve infegrated scenarios

A}
— Resonant 3D field ELM suppression with flexible coil arrays
— QH and other benign ELM regimes: resolve controlling edge
physics & ExB rotation requirements with flexible profile control o
— Pellet pacing: sufficient friggering and heat reduction o

* Plasma control: ECH rise provides unique headroom though
o-like electron heating, precise deposition & profile control
— Burn simulation & control with FPP-like actuator and measurement constraints
—Tearing mode control via direct island deposition or profile control
— Disruption avoidance: Machine learning, faster-than-RT simulation, sensing
* Digital twin develops robust schemes offline for testing online

DIlI-D the key proving ground to resolve tokamak control
DIln-D & the non-linear multiscale physics of MHD phenomena

L FUSION FACILITY
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DIlI-D planning to move to metal wall: resolving key core-

edge integration challenges

Effect of adding cy 10 to shots
+  Opportunity to evaluate how of various DIlI-D scenarios over the last six years
change with high-Z walls P eared
— At a high level, compatibility/access :

. .. 1000 — )
— Toleration of radiative losses from ! faa =03,
. . .y e . 1 close to
high-Z impuirities (stability, confinement) : radiation
7501 . collapse B

— Excellent diagnostics support model validation in a broad

", : (18S)
range of conditions :

500
+ Development of new control techniques to 280

maintain/recover lost performance
» Core ECH, ELM contral, etc.

0.2 0.4 0.6 0.8
Core radiation fraction

Dil-D
NATIONAL FUSION FACILITY
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Moving to metal walls enables better understanding of divertor 2027

detachment and integration

C present even in
strongest N seeding

* Removing carbon provides direct

control of radiating impurities 0.8 : . .
— C strong radiator, even with seeding * gg mw ®) §
— C sourcing impacts detachment access - v V95MW *O_ N
and dynamics o Q© N
] <
3 Nitrogen =
) Carbon 8 %
« Stable/robust detachment scenarios Sy 0:4 [ Dovtertum Fv 13
with extrinsic impurity injection, e.g. B R *e
o
XPR 5 1
' 2
L 4 ‘A* '*.
* Evaluate W sourcing and leakage with 0.0 ‘ . l
extrinsic radiators 0 5 10 15

N Seeding rate (Torr 1 /s)

DII-D

L FUSION FACILITY
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New Tungsten Wall in 2027 Will Enable Integration of

Reactor Relevant Materials into Core-Edge Challenge

» Crucial because of interactions with core and divertor
— Material behavior with fusion-relevant plasma distributions
» Without C-induced erosion
— Scenarios with relevant impurity fransport and radiation
* Reduce carbon radiators to study radiative optimization
* Increased ECH e~ heating can control impurity accumulation

— Changeouts to test different materials & components are easy
» Materials choices taken with US community

+ Combine with other DIII-D material testing capabilities
to assess key PMI physics & novel materials

__Wcaodtings on
. divertor

Toroidal limiters test novel
5 new materials & resolve SOL
2" models for FPP wall design

yyyyyyyyyyyy
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International Complementarity Examples

Long pulse development builds from DIII-D developed solutions

DIlI-D Superconducting
« Flexibility to develop scenarios » Extend to long pulse
— Improved fransport — Stability & wall compatibility
— Alleviated ELMs — Heating and current drive
— Mitigated heat flux I - Long pulse evolution

L Py w ]
5 Pec (MW) ]
N ) A [ ]
L LoopVoltage (V) 1

S o o = ®

4
m (krad/s) High confinement, den_sily, - Density (10 m)
0 pe06 & bootstrap, low rotation ‘- 4
ok [ N . N A iy 14
o TER prediction [Chrysial; PoP 2017] L
1 5 4 T Tme@® © 3

3 7
Time (s)

Strong collaboration with long pulse partners
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International Complementarity Examples

MAST-U and DIlI-D Complement on Divertor Science > Test on DTT

DIII-D + MAST-Upgrade = Italian DTT
- Diagnose physics « High closure * Closer to FPP parameters
* Reactor-relevance + Exitreme flexibility « Flexible divertor and
— High power & pedestal P — Long radial leg length plasma shape, but less
— High neutral opacity — Large flux expansion core operational range
- Recycling — Reduced upstream density | * Limited access (activated)
+ Detachment control - Test models of plasma- * Fully operational mid 2030s

« Core-edge integration & AT molecular reaction

V"
£

. @

New 2D 57
Divertor TS .-

Holistic physics basis for divertor research
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International Complementarity Examples

DIlI-D will Enable U.S. Success in ITER for the FPP Path

Distinctive Technical Programmatic Role
Contributions for US in ITER
« Ramp up & early phases e U.S.’s ITER simulator
DIll-D
- Transients and control * Train the team 7
» Robust scenarios to » Develop techniques
deliver burn goals & codes on DIII-D

* Physics to interpret & 9Vc‘Jlidate in.ITER
optimize performance ~Bring learning to FPP

Dil-D
NATIONAL FUSION FACILITY
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National Complementarity Examples

Complementarity Between U.S. National Facilities

DIll-D NSTX-U
 Profile and shape « Aspect ratio
* Low collisionality with .

high opacity Beta & bootstrap limits

+ Thermalized low rotation * Superalfvénic fast ions

« Solid divertor solutions & + Liquid metal PFCs
physics for projection & power handling

Broaden physics basis &
provide more options for FPP

RJ Buttery/IAEA-TM-LP-2024/44

DII-D

FUSION FACILITY



Basis of Approach

(1) Directly access some phenomena at reactor

values for physics-governing parameters
e.g. B, collisionality

Need flexibility
to find solutions

electromagnetic,
thermalized,

1E
(2) Resolve techniques = i g lowrotation, .
& science in relevant = =7 Pilot
regimes & project .g .
2 :
3 / Test key trends in high
(3) Add the tools needed i Explore parameter facilities
to address key issues i here ITER, DTT, SPARC...
& integration i -
7

Controlling variable

DIlI-D Access the right physics regimes to develop projectable solutions
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New Technologies Being Pioneered

to Resolve Safe Quenching of Disruptions

« Critical challenges ™

- Rapid quench to avoid thermal & mechanical loads Light gas gun rume tebe
* High speed technologies for rapid response & core deposition
» Advanced pellet fabrication

S

— Prevent or dissipate energetic runaway electrons «;j ¥ ‘*f RN
* Passive runaway mitigation coil ( = A\
« Disruption resilient PFCs 'm Runaway
(/" Mitigation Coil

* Foundational issues
— Resolve projection through diagnosis & simulation
— Disruption prediction & response to frigger quench

R
Complete stochastization by
core impurity deposition

DIln-D Disruptions remain a critical challenge for DIII-D
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RF Rises Provide Critical Properties to Close Reactor Gaps

REWORK THIS FOR LATEST SIMULATION '
EC ~~ >
Lines Power { (/
Disruption Eniry point for Divertor FPP f |
6 3-4 MW v . ) : Novel RF . " N
mitigators high dmin AT ges:rlr?gf?yeigsis technologies Diagnostics :
Perturbative Shape rise & . Peeling limited  Materials
fransport pedestal density Radiative pedestals erosion &
8 5.6 MW in H-mode & pressure limits techniques for ELMs fransport Sample &
ITER dual component
NTM/sawtooth testing
control, Q=10 AT stability Pulsed FPP ELM mitigation at
10 7 MW . limits scenarios low rotation & v* Component &
Thermalized materials at high
FPP-like fastions  Alternate ITER Burn Divertor science in Te. density, q;
scenarios simulation opaque conditions
ITER ramp up
& steady state Control impurity
. . ' accumulation
G _1_1 el Transport at Opaque High performance Materials with ECH
T GaRRaPT S low rotation, collisionless & high dissipation integration
helicon/LHCD T.~T, high B pedestals core-divertor solutions with core

with high SOL v*

DilI-D Key programs enabled at each stage
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With Higher B;, Plasmas with High Greenwald Density Fraction

(Npea/New 2 1) can be Accessed by ECH

Modeled ECH density limit assuming plasma current scalesto 2 MA at 25T

Ouvutside launch ECH

Top launch ECH

1.5 2.0
] pECZO,é O-mode G = « > ] pEC=O.6 .
] s mode 170 1.5 -] 5~
(ZD 1.0 K}@GG"%-% GHz % ] O-mode \
C . O-mode =</ - § do 170 GHz
~ g @@—-@\ 137 GHz ¥ ~ 1.0 1 h J/
3 . SRR 5 1.09 376K
g 1 110GHz 2\ g <,
[9) 0.5 — v [0} - X-mode
c 1 X-mode X-mode C 0.5 ] X-mode
ool ‘ 0.0] . -
1.6 1.9 2.2 2.5 1.6 1.9 2.2 2.5
B, (T) B, (T)
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ECHat22T

f=117.5 GHz
! =140 GHz
- f=137GHz f=104 GHz
1 1 1

» v

A

\

Dil-pD

NATIONAL FUSION FACILITY
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e o -

Gyrotrons Would Cover Whole Range of B; in a

Dimensionless
ECCD Efficiency () at p~0.6 . .
0.4F ; . On-Axis ECH Location
; 0.6
0.3 — Q b
3 [117.5GHz_TOP <04
e %
& 02F110GHz_TOP g —
o} N =
0.1F
104GHz 0.0
0.0t \ . ’
1.6 1.8 2.0 2.2 2.4 1.6

Bt (T) shot 219010

bui-o
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Negative Triangularity divertor design activity:

improving detachment and core/edge integration

NT shows atiractive route to performance and edge stability, but
detaches at higher density than PT and degrades confinement

* New divertor design with

changes in equilibrium, SOLPS ITER showing detachment
closure and pumping at lower upstream density
enable: = ] R
—  Access to divertor > T wrpen
dissipation at lower ne § fg | Armor
— Limit confinement 8 5|
degradation after ool
detachment THLore PSI 20;.\'\‘\._
- Parficle control %% 1 15 2 25 3 a5 4 45

r|OMP (1 019 m-3)
e,sep

DII-D

L FUSION FACILITY
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Vital to Develop Validated Physics Understanding
Wi-B

+ Comprehensive, culting edge
diagnostics resolve key science

* Over 20 theory groups and 70
codes engaged for validation

UEDGE
Example: Role of drifts in detachment m W
— Combine 2D EUV/VUV & Thomson data
=> Drifts critical to predict detachment Nt ‘
Data Model 1

Model 2
Divertor Dissipation: Impurity charge state C2+

The ‘why’ is critical
DIlI-D Need confidence to adapt solutions for FPP

L FUSION FACILITY
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Core Requires High Performance Solutions

* Wide space in profiles, shape and parameters

which optimizes along two broad paths: > Pulsed
—Steady state: Naturally improves stability & § '
fransport through shaping, profiles & high £ 10r
» Lower current, self-driven solutions, decreasing § o5k
loads & risks, sustainable noninductively Steady State
> Need to validate projected solutions 950z 07 05 05 1

Normalized radius

—Pulsed: High confinement with high plasma current
» Potentially increased instability, heat & sfress
» Can stability be maintained?

* Must also resolve compatibility of scenario
with divertor, wall and transient solutions

DIlI-D has unique profile and shape
Din-D flexibility to resolve core

RJ Buttery/IAEA-TM-LP-2024/53




A Key Strength DIII-D Brings is Workforce Development

Prof. Livia Casali, Early Career Award
“Innovative Core-Edge Solutions for Tokamaks”

Co-lead DIII-D Core-Edge Task Forc
Professor at UT Knoxville

Shaun Haske

Early Career Award
“Main lon Transport and
Fueling in the Pedestal”
Leader of DIlI-D NB physics

A. Rosenthal
My DOE Highlight
# MIT PhD

 DIlII-D an early career development center
— Leadership: science, XPs, talks, papers, systems, Pls
— Mentorship program, training, summer school
— Over 250 students, postdocs & interns with
PhD runtime & student support groups
+ Diversifying pathways
— Under-represented groups: internship programs,
community college engagement, SDSU
— Next generation: Local schools, girls Tech Trek, CuUWiP,
Young Women's STEM, Society of Women Engineers
+ Addressing workplace environment & opportunity
Invested in APS climate survey yielding major insights

— Environment: code of conduct, community agreements,
webinars, civil treatment, bystander & meetings trainings

— Open opportunities policies with balance monitoring &
double-anonymized deconflicted XP review to combat bias

Dii-D Seeking an enabling environment for all

NATIONAL FUSION FACILITY
RJ Buttery/IAEA-TM-LP-2024/54

GEM under-represented
grad interns in Ops




FPP Mission Will Broaden Reach on Workforce Development

* Expanded topical scope in technology & science
will help us diversify pathways further
— Invited tfo join new “Pathways” program for MSls
— Facilitate development with private sector

* New User Board energizing workforce development
with 5 new bodies being formed:
— UB Council - Personnel Development - Nominations
— Data & Access — DEIA Council
— Plan to provide specialist training and Ally program

« Apprenticeship center for engineers and technicians proposed
— DIII-D the ideal place with high range of roles and many institutions engaged

DIlI-D will provide powerful development
& preparation of the fusion workforce
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ELMs and Disruptions Must be Mitigated to

Avoid Damage to Plasma Facing Components % Et
[

* ELMs: Require benign-ELM core scenarios Transients
—Through profile & 3D manipulation tools

* Disruptions threaten structural integrity
—First line of defense: stable controlled core
— Mitigation systems are a vital fallback Te

Thermal quench erodes divertor
Current quench: stress, deformation

Runaway Electrons: melting,
leaks, breakages, coil quench

hermaIE
Energy =

Plasma Current

4 Technology & physics

Relativistic Electron
| solutions needed

Current

Time

DIln-D DIII-D unique flexibility in actuators to solve these problems
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Wall and Reactor Components Pose

Crucial Challenge for an Integrated Solution

- Survivability & functionality need to be Transiente
tested in relevant plasma conditions

—And impact and constraints "
on core fusion plasma

wuu Tungsten erosion &
leakage in divertor

1e+13

* Development of FPP-compatible
techniques is required

—Fewer, simpler systems,
hands-off, radiation-hard

= Neutron, heat & particle fluxes,
temperatures, stress, space, 24/7

DIlI-D can rapidly change out components
& assess relevant interactions

RJ Buttery/IAEA-TM-LP-2024/57
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Plasma Research Gaps Called out in CPP and FESAC

Long Range Plan Reports (Reference slide)

Gaps FESAC Long
Theme on timeline at end Range Plan CPP Gaps
Exhaust handling | ITEP Pages 16, 32, 33 | ITEP: FST-SOD-3 (p70) ITEP
chpoflbIe X Div: FST-SOD-2-pé9, IDivertor
with core Divertor FST-PR-A.3 (p54), DPS-C (p21) ®
Core scenario Pages 14, 31, 32 | Core: FST-PRD-2 (p%4) ;
. Transport: DPS-B (p19-20), c
Core solution Transport DPS-C (p21), DPS-D (p22) jre
Energetic Particles EP: FST-SOD-1 (pé9)
Disruptions Pages 13, 31, 32 | Disrupt: FST-SOD-4 (p71), @
Transients FST-PRE-4 (p101), FST-SOC-8 (pé5) ' Transients
ELMs ELMs: FST-SOD-1 (p69)
Plasma material Pages 14, 31 Pé\l\liS (FDST-PR(-A-C’))(DiSM)é(F)ST-S(()A-1) (pgl),
- .~ | inferactions (PMI FST-SOA-4 (p59), FST-SOB-1 (p57), FST-
Plasma '”TeTFGCT'”Q (PMI) SOD-5 (p72), FST-PRE-1 (p98) & DPS-I (p38)
components Diagnostics Diag: FST-PRE-1 (p98), e
FST-PRE-3 (p100), CC-1-MD (p106) Te:h.
RF RF: FST-SOG-3 (p83), FST-SOF-4,5 (078) &=
Dlis-zs
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DIlI-D Upgrade Provides Unique, Vital Capabilities

* Key capabilities that will not be available elsewhere

— Change out wall, divertor, materials and components readily and often to assess
wide range of new technologies and approaches in fusion-relevant condifions

— Core configuration flexibility with on & off axis H&CD & shape actuators to identify viable
pulsed & steady state cores compatible with wall, divertor and transient solutions

— Scientific foundations to adapt solutions for the FPP through comprehensive diagnostics
and outstanding flexibility

— Critical control tools for tearing, ELMs, disruptions, impurities & burning plasma simulation

— Integration of technical solutions developed on these fronts

« User facility model a crucial strength, levering dozens of groups across the US

Fundamentally, we need a facility that can discover a viable

approach & pioneer the science to project with confidence

DII-D

L FUSION FACILITY
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SPARC Cannot Solve All the Issues for ARC,

and Represents a High Risk Path if the Only Tool

* Things SPARC is not designed to do: Critical SPARC limitations:
—Focus on demonstration of predicted solution, « No large scale replacements
rather than exploration to discover what works of wall structures (divertors,
— Change out materials & components to fry tfechnology?)
different PFCs. Sample & technology testing. * No snowﬂol;e divertor
- Steady state and advanced profile solutions * No tangential beams
or negative triangularity + No ECH - NTMs, impuirities, burn
control
* SPARC has placed a series of bets on potential + Limited advance tokamak
solutions that need to break the right way capability; reliant on freeze-in

* No Neg T capability

» No lithium

* No pellets yet

« Limited diagnostic coverage

— Divertor configuration. Wall solution. ELM coil set.

— Neoclassical fearing modes can be avoided.
Disruptions tolerable.

—H/I mode access. Core impurity control.
Energetic particle confinement

SPARC is a great facility that offers valuable data to de-risk the FPP.

Should be part of the US plan and gain US participation.
Dil-D But US must not bet the farm on SPARC generating all the answers.

NATIONAL FUSION FACIL)
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Isn’t High field EXCITE (HFE) better?

Yes, No, and “its not necessarily a choice”

o Yes - HFE is clearly nearer to FPP, and so would reduce risk in some ways with key data closer to
FPP — though SPARC, ITER and DTT do that.
o No - because a HFE would become more activated, and so have less personnel access for
changeouts and testing.
= HFE will also take significant fime to design and consfruct
= HFE will cost significant $, which arguable should be prioritized to technology and milestone programs first.
o “lts not necessarily a choice”
= Fastest way to HFE is fo start on DIll-D upgrade now, as HFE can be built on DIII-D infrastructure
= Once/if mission need established, design and then construction can commence in Sorrento
Valley, with systems being ported onto new machine
= Mission need will likely be determined in several confexts
« Results from milestone program
« More specific FPP designs to identify specific tests needed.
« Progress in international program (SPARC, JT60SA, NSTXU)
« Affitude torisk for FPP path
« Availability of funding, noting $1-2Bn cost + $1Bn exploitation.

DIII-D will close clearly needed gaps ASAP
le!!:q HF-EXCITE need may emerge can cane be started if so
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We should wait until we understand the path and the needs

o The D3D plan targets urgent issues we know we need to solve:
= Scientific questions that must be resolved behind many solutions
= Techniques for core, divertor, fransients and technologies that must be tested
« These are shared between tokamak concepts, and offer value for beyond tokamak concepts
o Any adjustment to research mission that emerges from SPARC, milestone program, FPP designs, etc.,
would build on this plan and be accelerated by it.
= The investments in ECH would not be wasted, as they represent a broad fransformation in the
relevance of investigative regimes, not in any one particular solution.
= Any research needs emerging later would build on this progress, and be accelerated by them.
o The investments for DIII-D in this plan can be transferred to successor devices or rebuilds if further mission or
configurations needs emerge.
= An upgrade is possible based on d3d infrastructure, as set out in other white papers.
= Present site credits are worth around $700M, including presently funded development to 10 lines of
ECH. Further investments in ECH, NBI and power infrastructure would add about $260M to site credits.
= If you procure them now, they are ready sooner for such redirection
o DIII-D has a highly adept team and provides the facility to frain and keep those personnel at the forefront.
o DIII-D will provide ongoing data needed to test and drive the development of theory and simulation

NATIUNAL FUSION FAGILITY
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Government funded projects are slow & error prone - don'’t build

o DIII-D has long track record of delivering substantial upgrades, including rebuild of
key systems like neutral beams, and installation of new technology.
= Delivered on time, with research campaigns also delivered every FY!

o This project does not need substantive in vessel construction or rebuild
= Installation of remote ECH systems with in vessel copper mirrors
= Based on designs already developed for lines 7-10

o But why hasn'’t DIlI-D raised ECH power sooner?
= |Insufficient investments to maintain existing power levels and keep sockets filled
= US provider production failures played significant role
= We have changed fo robust suppliers (Thales, Kyoto) with established track
record, and starfed major overhaul of systems in 2021
« Now ready with nearly 4MW for 2024, and on track for 7MW in 202

DII-D

L FUSION FACILITY
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DIlI-D Addressing Risks of an Aging Facility

 Facility is operating well within established tolerances and lifetime,
with no specific failures emerging or large downtimes in past 2 decades

— Many parts of system designed for higher field (not all) ‘
« Significant design life margin in present operating conditions | T

— But ‘unknown-unknowns’ always a concern with an aging facility

+ System-wide assessment made to identify risk and mitigations
— Pre-emptively replace components that could lead to larger failures (e.g. SCRs, flex straps)

— Put in place monitoring systems to check for potentially developing issues < no concerns yet
(electrical connection, anti-torque structure, coil leads, water temperatures)

— Significant refurbishments possible, if they show signs of upcoming failure (e.g. joints)
* Replace key systems that could lead to significant outages:
— Replaced cryoplant liquefier, failed | coils, MG2 cooling. Could replace compressor.
— Upgrade investments would overhaul power systems and cooling as more power provided

DIlI-D continues to run reliably, delivering high levels of operation at full
performance, frequent upgrades, and any problems fixed rapidly

Hu"‘ We know the issues, what to look for, & have strong operational experience
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DIlI-D an Open User Facility with Shared Leadership Model

» Three key decision-making scientific groups
led collaboratively (LLNL, ORNL, U. Wisc, GA)
— Determine experiments, talks, papers, hardware
and diagnostic priorities
— 21 topical areas led by universities, Nat Labs & GA
» Developmental leadership opportunities

» Collaborative development of strategy
— Research plans, run time priorities, facility goals

» Oversight by independent representative bodies
— Overall Approach: new User Board represents all institutions and Pls
— Long Range Research Strategy: International Program Advisory Committee
— Near Term Priorities: Research Council representative of user institutions

Research lines & projects determined with DOE-FES under Cooperative Agreement

Supporting the national program, enabling ~100 institutions
DilI-D to pursue their priorities with established user model

FUSION FACILITY
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DllI-D-developed Integrated Physics Simulation Tools

Utilized to Project Path To Pilot Plant (and DIIl-D upgrades)

Turbulent Transport
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Integrated Simulation Example Point on ITEP Mission

Based on ‘Ready Now’' Hardware

Integrated Physics Simulations (IPS-FASTRAN)

80 0.20

- Based on ‘ready to initiate’ technology | peeatipar v
— 14MW ECH: ITER& Thales gyrofrons, outside launch w f’< | o /
* 12 lines 34 harm 170GHz, 8 lines 2nd harm 137GHz cutoff 1719 2 ' 00s
— 20MW beams. Present field. et i,
« Combined key performance and opacity qualities \ g
for integrated solution exploration o] S AT
— Nevutral pedestal penetration a fraction o

of pedestal width
— Low collisionality matching ‘CAT’ FPP

—Thermalized low rotation core with Te~T; 2 \\\_

* Trade-offs possible in density, Qos, B, efc.

Higher power, top launch, LHCD, helicon or higher field 10 10
would go further or cost less (but not assumed) ®| @lkadss) ” fGW/
\\\?4‘ 04

With ECH upgrade, DIII-D in right zone ° "
DIlI-D to resolve core-edge FPP solutions o

NATIONAL FUSION FACILITY Nepea(1017/m3) Nepes(10/7/m?)
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Impurity
Radiation
~10-30eV

L ™ Impurity Radiation
Do ionization ~5eV \ T,;10-30e

D, |?\zalum T,-BeV

Recombination <~1eV 3

Recombination
S

Recombination <~leV Rgfcombination <~1eV

7

ionization ~5eV
Do ionization ~5eV

Impurity ‘Q*L
Impurity Radiation
Radiation ~10-30eV
~10-30eV ) Impurity Radiation
T,~10-30eV

D, ionization T,~6eV

Recombination
T, <~1eV

Dil-pD
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Details of Divertor Parameters

* Performance rise places DIII-D in the relevant lonization

regimes for key divertor processes recompigion Ch:".s's
— Assess key physical mechanisms (e.g. broadening) ya N U

—x3 in dimensional space - fest over significant range B

CAT -
Reactor / pgrade
/ Key Divertor & Core-Edge Physics: \ Turbulenc& ™ Fluidity
. broadening (a/o.) P/
* Lyman a: photon frapping Divertor
- width (i
* lonization length: neutrals paths ” :
compared to divertor structures CATReactor | ™.,
. AT s .. lon
Recombination/ionization: governs s " |ength

proportion of neutrals at the edge

« Fluidity: divertor becomes more fluid Dimensional Ung;!rl;cDi'é
+ Turbulence broadening: radial testing [rCo—
\_ gradients drive furbulence in SOL /) Density (n.e21] Neut length (.

DIlI-D Relevant regimes to explore FPP divertor physics

NATIONAL FUSION FACILITY
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Working Collaboratively, We Can
Close the Key Gaps to an FPP

* Flexibility to pioneer solutions » Test behavior close to FPP parameters
* Resolve science to project them * Proof of high field tokamak approach

DIll-D Collaborative engagement a key
TS feature of DIII-D program




ADDITIONAL REFERENCE SLIDEs:
Additional technical data
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