

ENEA Fusion Components Failure Rate Database, status and evolution

IAEA 2nd Tech Meeting on Long-Pulse Operation of Fusion Devices Vienna, 13-17/10/2024

Danilo N. Dongiovanni, N. Terranova, G. Cortese, J.F. Ciparisse, T. Pinna ENEA C.R. Frascati – Nuclear Fusion Safety and Reliability Group

Context: importance of plant availability for energy production market

Nuclear fusion is expected to be available as energy technology source of energy in the near future. Besides scientific and technological challenges to obtain burning plasma and tritium self-sufficiency, a key aspect for the success of such technology in the energy market will be plant availability. Comparative with energy gen. Tech

Motivation for fusion reliability data collection/selection

> Reliability/Availability shall be considered since design early phases

> Fusion is characterized by pulsed operation, high scheduled maintenance time which reduce Op.Av.:

> MANDATORY to minimize unscheduled downtime

- Nuclear fusion plants will exploit many fusion specific components with relatively low technology readiness level, or in some cases exploit components with mature technology from fission plants but within different and poorly explored operating domain window (e.g., in terms of loads, operation regimes, etc.).
- An important source of uncertainty in reliability assessment then resides in the failure and repair model definition for fusion plant components.
- To limit such uncertainty, Fusion Components Failure Rate Database was developed to collect failure and repair screening data suitable for fusion systems reliability analyses.

RAMI analysis Input data

IAEA 2nd Tech

IAEA 2nd Tech Meeting on Long-Pulse Operati

Overview FCFRDB & IEA context

Framework: International Energy Agency Agreement on the Environmental, Safety and Economic Aspects of Fusion Power (IEA ESEFP) – Task 5.

FCFRDB WEB-ACCESSIBLE DATABASE

ENEN FCFRDB - Fusion Component Failure Rate DB

http://fus-se.frascati.enea.it:8080/Enea/login

- Users: Fusion Community Users willing to work on RAMI analysis or research on failure operational statistics for not commercial purposes.
- Currently about 60 active users from 22 institutes across 13 countries

FCFRDB USERS

FCFRDB Records at glance: hystorical record sources

ENEL

FCFRDB Records at glance: components record types

ENEL

Overview FCFRDB: Record Composition

			china EV india japan karna rasala VIA 🗮 🖉
Home User	rs Item Manager Histor	ry Logout Help	
		Show Component	
Family Name: Chemical	Type: Absorber bed	Sub-class1: Molecular sieve bed	
Sub-class2:	Sub-class3:	Sub-class4:	
Function:	Short Description: Molecular Sieve Beds	Failure Mode: All failure modes	
Cause:	Operation Mode:	Comp. Bounderies: Two beds of 36.4 kg per bed of Linde type 13X molecula 4A molecular sieve	r sieve, and two beds of 54.4 kg per bed of Linde type
Design Characteristics:	Appl. Characteristics: Tritium Waste Treatment system components at TSTA	Note: Table A-2 - The Reference gives only upper bound, then mean failure ratembdaUB*LN(0.4)/LN(0.1) because, with no faults observed, the following at LN(0.1)/D, where D is the number of operations	te have been estimated with the formula proximation can be done: Mean=-LN(0.4)/D and UB=-
Failure Rate/Prob Mean: 5.05E-02 Error Factor: N/A Upper Bound 95%: 1.27E-01 Lower Bound 5%: 0.00E+00	FR/P Unit:/D	Probability Distribution : Exponential (EF)	
MTTF:	MTTF Unit:		
MDTF :	MDTF Unit :		
Mean Time To Repair :	MTTR Unit :	MTTR Probability distribution :	Note- about 25 % of
Mean Repair Rate :	MRR Unit :		records include
Preventive Maintenance Policy:	Test/Inspection interval:	No of Failures: 0	Mean Time To Repair
No of Components: 4	Cumulative Working Time:	Cumulative Working Demands: 22	(MTTR) data stats
Validation: APPROVED	IEA Consensus: Y		
Reference: INEL EGG-FSP-8973, rev. 1	Attach New Reference		
Created By: dataEntry	Data entry: 03/12/2011	Last modification date: 20/05/2012	
Down Up			Copy in New Component Edit Mark For Deletion

Down Up

Overview FCFRDB: data applications

Design RAMI assessments e.g. ITER TBM systems

PSA-driven approach to safety Classification in DEMO

PBS elements (Components)	Safety function	Op. Md.	Possible Failure of SSC	Event Category	Significant safety event	Safety <u>Classif</u> . Criteria	Failure rate	Yearly Failure	Function safety category	Safety Class
50-1-2 - Cooling trai	ins of HCI	'B BB	PHTS							
50-1-2-1 - Piping,		NOp	Small size leak		No					
joints and valves	S1a		Rupture; Clogging	3	Large LOCA	Α	2.50E-11 /ł	7.33E-4	F2-S3	SIC-3
jointo uno rurteo			Valve-Fail to remain in position		No					
50-1-2-2 - Steam		NOp	Small size leak		No					
Generator/HX	S1a		Multiple tubes rupture	3	Large LOCA	Α	1.00E-07 /h	8.76E-4	F2-S3	SIC-3
Generatoritik			Shell rupture		No					
50-1-2-3 - Pressure	S1a	NOp	Leak/Rupture	4	Ex-vessel leak	Α	3.00E-10 /h	5.26E-6	F2-S3	SIC-3
relief devices		· •	Spurious pressure relief		No					
	S3a	Inc	Failure to open on demand	5	Large LOCA	С	6.00E-07 /h	3.15E-9	F1-S3	SIC-3
50-1-2-5 - HCS-		NOn	Small size leak		No					
Circulator	S1a	1.op	Rupture	3	Large LOCA	Α	1.00E-08 /h	1.75E-4	F2-S3	SIC-3
			Blower trip		No					
52-1-2 - Cooling tra	ins of WC	LL BI	3 PHTS							
52-1-2-1 - Pining		NOn	Small size leak		No					

https://doi.org/10.1016/j.fusengdes.2019.01.040

Estimation of DEMO disruptions due to component failures

Table 5 Yearly events of disruptions, fast and soft PSD allocated by systems. N = Negligible (i.e. less than 1 event every ten years

				0						
Р	BS		Disruption	ns	Fast		Soft	oft		
			Min	Max	Min	Max	Min	Max	Min	Max
1	1	Magnet system	0.1	1.9	0.1	0.6	0.4	6.1	0.5	8.6
1	2	Vacuum Vessel (VV)	N	0.1			N	N	N	0.1
1	3	Divertor	N	0.3			N	0.1	0.1	0.4
1	4	BB (HCPB)	0.3	4.5			4.9	24.4	5.2	28.9
1	5	BB (HCLL)	72.7	607.5			223.4	1870.1	296.1	2477.6
1	6	BB (WCLL)	0.5	6.9			58.0	385.9	58.5	392.8
1	7	BB (DCLL)	0.1	1.0			2.0	16.9	2.1	17.9
2	90	Cryostat	N	N			N	0.2	N	0.2
2	1	Thermal Shields					0.2	0.8	0.2	0.8
2	2	Tritium, Fuelling, Vacuum (TFV)	0.3	1.7	N	N	0.2	1.4	0.4	3.1
2	3	Remote Handling								

https://doi.org/10.1016/j.fusengdes.2018.04.114

 Reliability-grow Sensitivity studies on DEMO Breeding Blanket design

https://doi.org/10.1016/j.fusengdes.2020.111937

FCFRDB development: data from literature selection, suppliers

Expert RAMI analyst can propose/select literature data from other facilities / domain of applications to estimate system performance.

About 500 new records added to FCFRDB:

Reference	# records	Category	Туре	PLANT	System
INEEL_EXT-99-11044	194	Nuclear Facilities	Liquid	Metal	Cooling - Liquid Metal
INEL-95/0422	129	Chemical Process	Failure Stats	INL Chemical Process Plant	Chemical
INEEL_EXT-01	48	Nuclear Facilities	Screening	Vaiours	Plant Electrical Distribution Systems
ITER Radial Neutron Camera	38	Fusion	Vendor Data / Models	ITER Design	Neutron Diagnostics
INEEL/EXT-99-001318	26	Nuclear Facilities	Screening	Vaiours	Ventilation Systems
DRAGON- EAST data	15	Fusion	Failure Stats	Dragon-East	Cryosystem, Lithium loop
Fast Discharge Unit - Model	13	Fusion	Reliability Model	ITER Design	Magnets & PS
Accelerator Application -	8	Fusion	Screening	Vaiours	Magnets
ITER Blanket Remote Handling System	7	Fusion	Vendor data	ITER DESIGN	Remote Handling
INEL_0299	5	Fusion	Screening	Vaiours	Liquid Metal
DIII-D	5	Fusion	Failure Stats	D-IIID	Magnet

FCFRDB development: data for fusion specific component qualification tests

Fusion specific component, load dependent

Qualification dataset: 26 Divertor Inner Vertical Target mock-ups.	Number of mock-up	Number of cycles	Heat Flux (MW/m ²)	Survived	
HighHeatFlux tests:10 MW/m2 for 5000 cycles (10 sec flux on, 10 sec	26	5000	10	26	
off) and at 20 MW/m2 for additional 300 cycles.	20	1000	20	17	
https://doi.org/10.1016/j.fusengdes.2014.12.006	6 300		20	6	
A Bayesian framework + Step-Stress Accelerated Life Testing (SSALT)					
framework exploited for failure model inference:	Exponential 7	Γi~exp(λ) :	$\lambda = C^{-1} e^{-B/V}$		
Posterior distribution $f(\theta X) \sim f(\theta) L(X \theta) = f(\theta) \prod_i l_i$	Weibull <i>Ti~W</i>	eibull(β,η):	$\lambda(t) = \beta C^{-1}$	$\lambda(t) = \beta C^{-\beta} e^{-\beta B/V} t^{\beta-1}$	

Estimated Mean Time To Failure (MTTF)

Weibull takes into account degradation in time and enables building more realistic/operational sequences

Cycles

3000

Cycles

4000

5000

FCFRDB development: data for fusion specific component qualification tests

Fusion specific component, load dependent

- single crystal Chemical Vapour Deposited fast D-T neutron diamond detectors to be exploited in ITER
- an expected life of expressed as max cumulated fluence of uncollided neutrons 1.E15 neutrons /cm² before degradation was derived from radiation hardness tests
- A mapping between cumulated neutron fluence (n/cm²) and Mean Time To Failure (MTTF) (h) was obtained exploiting a reference irradiation scenario at different Lines Of Sight (LOS)
- A MTTF averaged over LOS of 23.76 ITER operational year was found, by assuming 4608h per ITER operational year (excluding the calibration by alpha sources hours).
- A fit to lognormal distribution over different LOS resulted in (m,s)=(11.60, 0.56) parameters

Ð							30		Jue			Juai							
8				Cumu	lated Uncol	llided Fluend	e												
. <u> </u>			Years	LOS4	LOS5	LOS6	LOS7	LOS8	LOS9	LOS10	L0S12	LOS14	LOS16	LOS18	LOS19	LOS20	L0521	LOS22	L0523
-			0	7,01E+11	6,20E+11	7,13E+11	7,98E+11	9,30E+11	9,38E+11	9,71E+11	1,16E+12	1,00E+12	9,34E+11	8,10E+11	7,36E+11	6,18E+11	9,07E+11	9,03E+11	8,94E+11
			1	1,40E+12	1,24E+12	1,43E+12	1,60E+12	1,86E+12	1,88E+12	1,94E+12	2,31E+12	2,01E+12	1,87E+12	1,62E+12	1,47E+12	1,24E+12	1,81E+12	1,81E+12	1,79E+12
ō			2	2,10E+12	1,86E+12	2,14E+12	2,40E+12	2,79E+12	2,81E+12	2,91E+12	3,47E+12	3,01E+12	2,80E+12	2,43E+12	2,21E+12	1,85E+12	2,72E+12	2,71E+12	2,68E+12
.≚ I		DD and DT Trace	3	2,80E+12	2,48E+12	2,85E+12	3,19E+12	3,72E+12	3,75E+12	3,88E+12	4,62E+12	4,01E+12	3,73E+12	3,24E+12	2,94E+12	2,47E+12	3,63E+12	3,61E+12	3,58E+12
Ter I		Tritium Campaign	4	3,50E+12	3,10E+12	3,56E+12	3,99E+12	4,65E+12	4,69E+12	4,85E+12	5,78E+12	5,02E+12	4,67E+12	4,05E+12	3,68E+12	3,09E+12	4,53E+12	4,51E+12	4,47E+12
2			5	4,20E+12	3,72E+12	4,28E+12	4,79E+12	5,58E+12	5,63E+12	5,83E+12	6,94E+12	6,02E+12	5,60E+12	4,86E+12	4,42E+12	3,71E+12	5,44E+12	5,42E+12	5,36E+12
Ð			6	4,90E+12	4,34E+12	4,99E+12	5,59E+12	6,51E+12	6,57E+12	6,80E+12	8,09E+12	7,03E+12	6,54E+12	5,67E+12	5,15E+12	4,33E+12	6,35E+12	6,32E+12	6,26E+12
Ō			7	5,61E+12	4,96E+12	5,70E+12	6,39E+12	7,44E+12	7,51E+12	7,77E+12	9,25E+12	8,03E+12	7,47E+12	6,48E+12	5,89E+12	4,94E+12	7,25E+12	7,22E+12	7,15E+12
<u></u>		No operations	8	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
<u> </u>			9	7,15E+12	6,32E+12	7,27E+12	8,14E+12	9,48E+12	9,57E+12	9,90E+12	1,18E+13	1,02E+13	9,52E+12	8,26E+12	7,51E+12	6,30E+12	9,25E+12	9,20E+12	9,12E+12
		DT1 Campaign	10	8,69E+12	7,68E+12	8,84E+12	9,90E+12	1,15E+13	1,16E+13	1,20E+13	1,43E+13	1,24E+13	1,16E+13	1,00E+13	9,13E+12	7,66E+12	1,12E+13	1,12E+13	1,11E+13
			11	1,02E+13	9,04E+12	1,04E+13	1,17E+13	1,36E+13	1,37E+13	1,42E+13	1,69E+13	1,47E+13	1,36E+13	1,18E+13	1,07E+13	9,02E+12	1,32E+13	1,32E+13	1,30E+13
Ð			12	6,38E+13	5,64E+13	6,49E+13	7,27E+13	8,46E+13	8,54E+13	8,83E+13	1,05E+14	9,13E+13	8,50E+13	7,37E+13	6,70E+13	5,62E+13	8,25E+13	8,21E+13	8,13E+13
O		DT1 Campaign	13	1,17E+14	1,04E+14	1,19E+14	1,34E+14	1,56E+14	1,57E+14	1,63E+14	1,94E+14	1,68E+14	1,56E+14	1,36E+14	1,23E+14	1,03E+14	1,52E+14	1,51E+14	1,50E+14
			14	1,71E+14	1,51E+14	1,74E+14	1,95E+14	2,27E+14	2,29E+14	2,37E+14	2,82E+14	2,45E+14	2,28E+14	1,97E+14	1,79E+14	1,51E+14	2,21E+14	2,20E+14	2,18E+14
ā			15	2,24E+14	1,98E+14	2,28E+14	2,55E+14	2,97E+14	3,00E+14	3,10E+14	3,69E+14	3,21E+14	2,98E+14	2,59E+14	2,35E+14	1,97E+14	2,90E+14	2,88E+14	2,86E+14
5		DT2 2/3 Campaign	16	2,77E+14	2,45E+14	2,82E+14	3,16E+14	3,67E+14	3,71E+14	3,84E+14	4,57E+14	3,97E+14	3,69E+14	3,20E+14	2,91E+14	2,44E+14	3,58E+14	3,57E+14	3,53E+14
<i></i> =			17	3,30E+14	2,92E+14	3,36E+14	3,76E+14	4,38E+14	4,42E+14	4,57E+14	5,45E+14	4,73E+14	4,40E+14	3,81E+14	3,47E+14	2,91E+14	4,27E+14	4,25E+14	4,21E+14
-			18	3,83E+14	3,39E+14	3,90E+14	4,37E+14	5,08E+14	5,13E+14	5,31E+14	6,32E+14	5,49E+14	5,10E+14	4,43E+14	4,03E+14	3,38E+14	4,96E+14	4,93E+14	4,89E+14
		DT2 4/5 Campaign	19	4,36E+14	3,86E+14	4,44E+14	4,97E+14	5,79E+14	5,84E+14	6,04E+14	7,19E+14	6,25E+14	5,81E+14	5,04E+14	4,58E+14	3,85E+14	5,64E+14	5,62E+14	5,56E+14
0			20	4,89E+14	4,32E+14	4,98E+14	5,57E+14	6,49E+14	6,55E+14	6,78E+14	8,07E+14	7,01E+14	6,52E+14	5,65E+14	5,14E+14	4,31E+14	6,33E+14	6,30E+14	6,24E+14
5			21	5,42E+14	4,79E+14	5,52E+14	6,18E+14	7,19E+14	7,26E+14	7,51E+14	8,94E+14	7,77E+14	7,22E+14	6,26E+14	5,70E+14	4,78E+14	7,01E+14	6,98E+14	6,92E+14
5			22	5,95E+14	5,26E+14	6,05E+14	6,78E+14	7,90E+14	7,97E+14	8,25E+14	9,82E+14	8,53E+14	7,93E+14	6,88E+14	6,25E+14	5,25E+14	7,70E+14	7,67E+14	7,59E+14
<u></u>			23	6,48E+14	5,73E+14	6,59E+14	7,39E+14	8,60E+14	8,68E+14	8,98E+14	1,07E+15	9,29E+14	8,64E+14	7,49E+14	6,81E+14	5,72E+14	8,39E+14	8,35E+14	8,27E+14
2			24	7,01E+14	6,20E+14	7,13E+14	7,99E+14	9,30E+14	9,39E+14	9,72E+14	1,16E+15	1,00E+15	9,34E+14	8,10E+14	7,37E+14	6,18E+14	9,07E+14	9,03E+14	8,94E+14
-			25	7,54E+14	6,67E+14	7,67E+14	8,59E+14	1,00E+15	1,01E+15	1,05E+15	1,24E+15	1,08E+15	1,01E+15	8,71E+14	7,92E+14	6,65E+14	9,76E+14	9,71E+14	9,62E+14
σ			26	8,07E+14	7,14E+14	8,21E+14	9,20E+14	1,07E+15	1,08E+15	1,12E+15	1,33E+15	1,16E+15	1,08E+15	9,33E+14	8,48E+14	7,12E+14	1,04E+15	1,04E+15	1,03E+15
ω			27	8,60E+14	7,61E+14	8,75E+14	9,80E+14	1,14E+15	1,15E+15	1,19E+15	1,42E+15	1,23E+15	1,15E+15	9,94E+14	9,04E+14	7,59E+14	1,11E+15	1,11E+15	1,10E+15
¥			28	9,13E+14	8,08E+14	9,29E+14	1,04E+15	1,21E+15	1,22E+15	1,27E+15	1,51E+15	1,31E+15	1,22E+15	1,06E+15	9,60E+14	8,05E+14	1,18E+15	1,18E+15	1,16E+15
a			29	9,66E+14	8,54E+14	9,83E+14	1,10E+15	1,28E+15	1,29E+15	1,34E+15	1,59E+15	1,38E+15	1,29E+15	1,12E+15	1,02E+15	8,52E+14	1,25E+15	1,24E+15	1,23E+15
=			30	1,02E+15	9,01E+14	1,04E+15	1,16E+15	1,35E+15	1,36E+15	1,41E+15	1,68E+15	1,46E+15	1,36E+15	1,18E+15	1,07E+15	8,99E+14	1,32E+15	1,31E+15	1,30E+15
2			31	1,07E+15	9,48E+14	1,09E+15	1,22E+15	1,42E+15	1,44E+15	1,49E+15	1,77E+15	1,54E+15	1,43E+15	1,24E+15	1,13E+15	9,46E+14	1,39E+15	1,38E+15	1,37E+15
6			32	1,13E+15	9,958+14	1,14E+15	1,28E+15	1,49E+15	1,51E+15	1,56E+15	1,86E+15	1,61E+15	1,50E+15	1,30E+15	1,18E+15	9,928+14	1,46E+15	1,45E+15	1,44E+15
5			33	1,18E+15	1,04E+15	1,20E+15	1,34E+15	1,56E+15	1,58E+15	1,63E+15	1,94E+15	1,69E+15	1,57E+15	1,36E+15	1,24E+15	1,04E+15	1,52E+15	1,52E+15	1,50E+15
<i>.</i> .			34	1,23E+15	1,09E+15	1,25E+15	1,40E+15	1,63E+15	1,65E+15	1,71E+15	2,03E+15	1,76E+15	1,64E+15	1,42E+15	1,29E+15	1,09E+15	1,59E+15	1,59E+15	1,57E+15
	7		35	1,28E+15	1,14E+15	1,31E+15	1,46E+15	1,70E+15	1,72E+15	1,78E+15	2,12E+15	1,84E+15	1,71E+15	1,48E+15	1,35E+15	1,13E+15	1,66E+15	1,65E+15	1,64E+15

https://doi.org/10.1016/j.fusengdes.2024.114209

IAEA 2nd Tech Meeting on Long-Pulse Operation of Fusion Devices Vienna, 14-18/10/2024 11

https://doi.org/10.1016/j.nima.2021.165574

scCVD detector location

FCFRDB development: new data from fusion facilities

Availability/Reliability global performance statistics on specific plant needs to be disaggregated to become informative for new systems reliability-driven design

- Sensitize facility operators to raw failure events/ maintenance data collection at component level, \geq
- Machine operation data perspective not always superposable to RAMI data perspective \geq
- Collaborations with facilities being established Definition of raw data collection forms \geq

		Date and Place of Form Compilation	Family Name	Given Name	Institution / Affiliation	Qualification	Role	Contact (email)				Notes	
	User/Form Identification												
GENERAL INFO SECTION		Laboratory / Facility	Acquisition Date	Acquisition Context	Acquisition Process	Data Processing						Notes	
	Data Acquisition Information												
		Component ID	Function	Operation Mode	Component Boundary	Design Characteristics	Application Characteristics	Preventive Maintenance Policy	Test / Inspection interval	Co	mponent	definition	
	Component												
		Start date	Stop date	Operation parameters (System)	parameters						o aration d	aration definition	
	Operating time										Operation de		
COMPONENT		Failure Mode	Cause	Time/ Demand # of Failure	Time/Demand # To Failure	Failure Detection / Action on detection	Time to repair (Prepare)	Time to repair (Perform)	Time to repair (Commissioning)	Time to repair (Total)	N° of Workers	Notes	
FAILURE INFO SECTION	Failure/Corrective Maintenance identification									Failure	e/Repair c	lefinition	
NECORD 1		Activity	Cause	Date	Time to Maintenance	N° of Demands to maintenance	Time to Perform Preventive Maintenance (Prepare)	Time to Perform Preventive Maintenance (Perform)	Time to Perform Preventive Maintenance (Commissioning)	Time to Perform Preventive Maintenance (Total)	N° of Workers	Notes	
	Preventive maintenance						(para)	(N	aintenanc	e policy d	efinition	
		IAFA 2nd	Tech Ma	poting on	Long-Pul	e Operat	ion of Fu	sion Devi	os Vien	$1/1_{-18}$	/10/2024	12	

FCFRDB development: new user interface website

Under development a new user website enabling:

- Search on records by keyword
- complex queries editing, saving
- data export to excel

				Query Tool
Query ed	ditor			
Query	Join conditions Query Extra	a		
	design_characteristics	Contains	helium	0
AND	type	Contains	compressor	O 😑
AND	no_of_failures	Greater than	10	0 😑

commonda	tamerge (4/4240)							13/09/24
Search + Qu	iery editor	ତ		$\Sigma \equiv$				
id idre	ecord family_name	type	sub_class1	sub_class2	sub_class3	sub_class4	function	short_description
376 3764	Mechanic	Compressor / Blower / Fan	Compressor	Positive displacement	Rotary	Screw	Helium compression	Screw Compress
376 3765	Mechanic	Compressor / Blower / Fan	Compressor	Positive displacement	Rotary	Screw	Helium compression	Screw Compress

Summary and Conclusion

- A high plant availability (~80%) is the target for nuclear fusion to compete in the energy market.
- Reliability-driven design is mandatory and shall be supported by collection of fusion facilities failure and maintenance data <u>at component level</u>
- Collaborative effort IEA ESEFP Task 5 is aimed at such purpose with the Fusion Component Failure Rate Data Base, made available for fusion community
- Data collection is ongoing, ~4700 records now available:
 - > Data from expert selection among literature data
 - > Data from fusion specific qualification and testing of components
 - Data from suppliers system analyses
 - Invest time/resources in collecting/sharing data from your FACILITY
- Development of a new user web interface enabling advaced data search is ongoing IAEA 2nd Tech Meeting on Long-Pulse Operation of Fusion Devices Vienna, 14-18/10/2024

14

Thanks for your attention

danilo.dongiovanni@enea.it

