Optimizing fast-ion confinement in NBI plasma for long-pulse operation of EAST

by

J.F.Wang1*

Q.L.Ren¹ , J.Huang¹ , X.Z.Gong¹ ,S.F.Wang,X.M.Zhai¹ , X,Jian¹ , J.P.Qian¹ , J.Fu1,Y.Q.Chu1, L.Ye1, Y.Tu1, Q.Zang1, Z.C.Lin1, Y.H.Xie1, EAST team1

1<i>Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

Presented at the 2nd Technical Meeting on Long-Pulse Operation of Fusion Devices Vienna, Austria, IAEA Headquarters

Oct 16, 2024

***E-mail: [jfwang@ipp.ac.cn](mailto:juan.huang@ipp.ac.cn)**

nd martin l

- q **Introduction of EAST NBI system**
- q **Optimization of fast-ion confinement by adjusting plasma shape for long-pulse operation**
- q **Upgrade of EAST NBI system for long-pulse operation**
- q **Conclusion and discussion**

Large shine-through loss requires the high density in LPO of NBI

- The fully superconductivity and vertical injection port design of EAST leads to limitations of beam $\frac{1}{2}$ $\$ injection angles (19.5/17 Deg.)
- A large number of shine-through loss particles will $\frac{\widehat{\epsilon}}{2}$ hit the first wall on the high-field side.
- **High-density plasmas are needed to avoid shinethrough loss on EAST.**

Large prompt loss limits long-pulse operation of NBI on EAST

- High density causes beam deposition profile to move outward.
- Moreover, this small injection angle results in a large number of trapped ions (*fTrap*).
- Large prompt loss limits long-pulse opeation

of NBI on EAST in high density plasma.
 $\Delta_r \sim 2 \left(\frac{2R}{r} \right)^{1/2} q r_L$ **o** large number of trapped ions (f_{Trap}).
 **Large prompt loss limits long-pulse opeation

of NBI on EAST in high density plasma.** $\Delta_r \sim 2\left(\frac{2R}{g_{T_L}}\right)^{1/2}$ ar_t **~15cm**

Ip=400kA,fGr(ne/nG)~0.65, Enbi=55keV

~ 15cm

Large prompt loss limits long-pulse operation of NBI on EAST

- High density causes beam deposition profile to move outward.
- Moreover, this small injection angle results in a large number of trapped ions (f_{Trap}) . $\Delta_{pass} \sim qr_L$
- **Large prompt loss limits long-pulse opeation of NBI on EAST in high density plasma.**
	- **enlarging gapout --> Increase Bstart --> redcued trapped ion fraction**
	- **enlarging gapout --> drift the plasma inward--> move the deposition inward**

Ip=400kA,fGr(ne/nG)~0.65, Enbi=55keV

passing ion

trapped ion

Enlarging gapout to improve beam heating in high density plasma

- gapout: the distance between The Contract of the 101726 the last closed flux surface $1.0 \div \sqrt{1.0 \div 101731}$ (LCFS) and the limiter at the outboard mid-plane.
- high density f_{Gr} ~0.65, $\qquad \qquad \qquad \widehat{\mathbb{E}}^{\circ \circ}$ Ip~400kA, Enbi~55keV,
- Beam heating increases with the gapout according to the neutron intensity.

Enlarging gapout to reduce impurity and radiation

- gapout: the distance between

the last closed flux surface

(LCFS) and the limiter at the

and plane the last closed flux surface (LCFS) and the limiter at the outboard mid-plane.
- high density **fGr~0.65**, Ip~400kA, Enbi~55keV
- **Larger gapout --> bigger Shafranov shift ∆s --> higher β^p**
	- **--> lower tungsten impurity**
	- **-->** lower radiation power
 $\sum_{\alpha=0}^{\infty}$

which are benefit for long-pulse operation.

Enlarging gapout to reduce beam loss

Simulations results: (NUBEAM,TRANSP, ORBIT)

- **Example 18 and 18 beams to deposite inward.**
- **Prompt loss (2%)and ripple loss (~2%) decrease with gapout.**
- Fast ion density increases with $\sum_{\mathbf{S} \in \mathcal{S}_{\mathbf{S}}^{(n)}} \sum_{\mathbf{S} \in \mathcal{S}_{\mathbf{S}}^{(n)}}$ **gapout.**
- **Suppon.**
The slowing down beams show
the fraction of pitch angle >0 **the fraction of pitch angle >0 increases with gapout.**

Larger gapout leads to more fast ions and lower turbulence intensity

- When Ip=400kA, Bt=-2.4T, $f_{Gr}(n_e/n_G)$ ~0.54, with only NBI $(E_{NR} = 55keV, P_{NR} = 0.85MW)$
- **INPA diagnostic data shows that fast ion strength increases with gapout, which is consistent with the results of numerical simulations (NUBEAM/TRANSP).**
- **DBS diagnosis data shows that at ρ~0.99, the intensity of turbulence (k~11.8cm-1) decreased with increasing**
gapout.
 $\frac{1}{2}$
gapout. gapout.

Duration of ~60s High-β^P Plasma Achieved with NBI+RF on EAST

- **High performance plasma with RF and NBI**
	- $-$ RF+NBI: P_{RF} ~3.7MW, P_{NB} ~2.1MW
	- H98y2 >1.0, **fGr(ne/nG)~0.65**,
	- $-$ **β_P** \sim 2.0, β_N \sim 1.6, f_{bs} \sim 30%

Enlarging gapout leads to long pulse High-β^P Scenarios in high density plasma

- For $f_{Gr}(n_e/n_G)$ ~0.65, when gapout increases about 1cm, increased thermal
ion and fast ion gradient lead the plasma ion and fast ion gradient lead the plasma inner shifts about 0.5cm.
- **Higher β^p and total stored energy Wmhd (15kJ) have been achieved due to larger gapout and shafranov shift ∆s.**

ASIPP

J. F.Wang/IAEA-TM LPO/Oct-2024

q **Introduction of EAST NBI system**

q **Optimization of fast-ion confinement by adjusting plasma shape for long-pulse operation**

q **Upgrade of EAST NBI system for long-pulse operation**

q **Conclusion and discussion**

Beam self-adjusting method for long pulse NBI operation

- **Beam self- adjusting method based on beam re-turn on**
- **Ion source is easy to breakdown (BD) when operated in long pulse operaion**
 with NBI. After the high-voltage power with NBI. After the high-voltage power supply was shut down, the NBI control system will re-turn on the high-voltage power supply in about 90 ms to keep on extract the beam and ensurethe long pulse operation on EAST.

Beam self-adjusting method for long pulse NBI operation

- **Beam self- adjusting method based on beam re-turn on**
- **Ion source is easy to breakdown (BD) when operated inlong pulse operaion with NBI.**
- **Beam re-turn on 90ms later**
- **Beam self-adjusting method has been applied inabove Long pulse NBI operation.**

Upgrade ion source to radio frequency source for LPO

- **No filaments and maintenance free; simple structure; low cost and high reliability**
- **Promising candidate of next generation of NBI;**

Bucket chamber and accelerator are similar with current arc source

Yahong Xie et al. PPC-SOFE,,2021

J. F.Wang/IAEA-TM LPO/Oct-2024

Conclusion and discussion

- **Simulations and experiments have proved that the plasma shape with larger gapout facilitates beam heating bydepositing the initial beam ions inwards**,**decreasing prompt loss and ripple loss.**
- **Enlarging gapout reduces turbulence intensity and improves plasma confinement in high density NBI plasma.**
- **Although larger gapout is beneficial to beam heating, it needs to be considered comprehensively due to the gapout effect on RF heating**,**when many auxiliary heating methods are applied simultaneously.**
- **Self- adjusting method and RF sources in NBI engineering will be applied for long-pulse operation with NBI on EAST.**

Thanks for your attention!

