Numerical study and optimization of non-inductive current drive efficiency in FNS tokamak plasmas

Eugenia Dlougach & Boris Kuteev (NRC KI)

BTR ref

BTR-code for NBI design (1995)

- ✓ Beam Tracking with Re-ionization, *Born-To-Run* (Windows, C++)
- Used by NBI teams in R&D (incl. ITER) for 3D NBI beamlines optimization and detailed thermal loads analysis, losses, power deposition, MF shielding, etc.
- Tracks NB evolution and transmission through beamlines from beam source until absorption by plasma or striking far wall
- ✓ Comprehensive and flexible tool, interactive, user-friendly (GUI)
- ✓ Verified (JET-2008, IO-2023), integrated in **BTOR** suite (2018), ~80 000

Topics of today: SSOp in FNS, NBI

- ✓ FNS tokamaks: SSOp, designs, possibility to run by NBI, scenario specifics
- ✓ NBCD issues, performance evaluation, figures of merit, methods
- ✓ Results: EP losses, energy profiles, CD profiles for FNS-ST design
- $\checkmark\,$ NBI performance limits and boosters in SSOp context

BTR INFO: tasks, features, usage, versions

FNS: mission, concept, specifics

- FNS tasks: fusion and fission tech, material science, make pure fusion closer...
- **FNS concept:** intense neutron generation by use of fusion device with moderate plasma params (rel to pure fusion)
- FNS main advantage: lower physical demands, reduced size and cost → competitive for F&F engineering, core device for hybrid reactors
- SSOp critical issue for FNS
- NBI: SSOp driver, non-inductive CD, intense neutron production (60-99%); + heating i/e, fueling, torque
- Scenario: 2E-component plasma (EP + thermal pop) in strongly toroidal MF; high pressure and power in *hot ions* (*EP*), higher gradients in profiles, no self-organization
- NB high impact → opportunities for plasma control; scenario optimized for NBCD or for desired current shape – hollow, peaked, uniform
- Instruments: include all the effects and FNS specifics, 3D/6D, non-cylinder, fast + accurate
- BTR: chosen as base for NBI simulator; detailed NB 6D structure, high perf (parallel), methods – analytical, deterministic; naturally extended to EP tracking in tokamak plasma

NBCD issues, concerns

- **NBI STOPPERS**
- Main limit for NB applications NBI cost and perf. (Plasma main stopper)
- Overall NB perf is limited by the source ions neutralization (gas < 60%), next reduced by transmission (scraping) and re-ionization losses in the **beamline** (- ~10%)
- Non-inductive current is driven by passing EP fraction, however EP orbit losses are highly sensitive to MF shape and NBI energy and geometry – spatial size, aiming point, axis inclination, internal divergence
- EP deposition/velocity pitch profiles are determined by plasma density (n_e) profile, while EP slowing (thermalization) conditions are ~ T_e^{3/2}/n_e (low collisions)
- Collisions and radial drifts decrease the NBCD values
- NBCD reshapes initial thermal profiles \rightarrow BS current!
- Plasma rotation, finite orbit width decrease NBCD due to thermal profiles reshaping
- NBCD = passing + trapped (banana) EP, ratio depends on EP r-V deposition
- For SSOp, NBI main function is toroidal CD; heating is a spillover;
- Although expensive, NBI can be the most efficient and flexible option among noninductive CD methods; can be uses for off-axis and on-axis CD

FNS-ST

Compact Fusion Neutron Source – based on spherical tokamak (low aspect)

- Water-cooled EMS, twisted central pole CuCrZr
- Wall power 60 MW
- **DT fusion power 3 MW** (20:1)
- **Neutron yield 10¹⁸ 1/c** (25:1)
- Beam driven fusion, NBCD + BS (high NB impact!)

 $P_{NB} = 6 - 10 MW$

```
FNS designs
 R_0 = 0.5 m
  A = 1.67
   k = 2.75
   δ = 0.5
 B_0 = 1 - 1.5 T
I_{p} = 1-1.5 \text{ MA}
   Q~0.2
  T<sub>e</sub> = 5 keV
```

 $n_{o} = ~ 1.10^{20} m^{-3}$

DEMO-FNS

Hybrid (F&F) reactor prototype (conventional)

 $R_0 = 3.2m$ EMS - LTS (Nb₃Sn, NbTi) A = 3.2 • Wall power - 200 MW k = ~2 DT fusion power - 40 MW (5:1) δ = 0.5 Neutron yield – 1.3·10¹⁹ 1/c (7:1) $B_0 = 5 T$ Fission power – 400 MW $I_{p} = 5 MA$ Thermal power – 700 MW Q~1 Beam driven + thermal, NBCD T_e = 10-15 keV • $P_{NR} = 30 \text{ MW} (+ P_{FCR} = 6 \text{ MW})$ $n_{p} = ~ 1.10^{20} \text{ m}^{-3}$

Second Technical Meeting on Long-Pulse Operation of Fusion Devices H&CD (~ ready)

methods

Modelling: beam, plasma, NB losses and effects

NB 6D statistics and EP deposition ← BTR code
NB stopping (atoms ionization) ← Janev or ADAS cross-sections

Magnetic field: MHD equilibria (GSE), *loosely fixed* plasma bound, consistent with external currents

EP thermalization: classical theory

Spitzer time

$$\tau_{se} = \frac{3\sqrt{2\pi}T^{3/2} 2\pi\epsilon_{0}^{2}m_{b}^{2}}{\sqrt{m_{e}}m_{b} ne^{4}\ln\Lambda} = Coeff_{1} \cdot T_{e}^{3/2} \cdot \frac{A_{b}}{n}$$

Critical energy

$$E_{c} = \left(\frac{3\sqrt{\pi}}{4}\right)^{2/3} \left(\frac{m_{i}}{m_{e}}\right)^{1/3} \frac{m_{b}}{m_{i}} \cdot T_{e} = Coeff_{2} \cdot \frac{A_{b}}{A_{i}^{2/3}} T_{e}$$

$$\frac{\partial^2 \Psi}{\partial Z^2} + \frac{\partial^2 \Psi}{\partial R^2} - \frac{1}{\overline{R}} \frac{\partial \Psi}{\partial R} = -2\pi\mu_0 R j_{\varphi}$$

Hot ion slowing-down time:

$$\tau_s = \frac{\tau_{se}}{3} \cdot \ln\left[1 + \left(\frac{E_b}{E_c}\right)^{3/2}\right]$$

EP losses, trapping: local pitch $(V_{//}/V_0)$ - Trapped and passing EP fractions

NBI performance evaluation and comparison

- **Total NB perf** = beamline efficiency × NBI gain in plasma (here: NBCD)
- **Beamline:** neutralization, transmission, re-ionization
- **NB EP efficiency:** shine-through, orbits in MF (1st Larmor, bananas, 3D MF, ٠ drifts), CX losses (< 100keV/a), turbulence, instabilities

CD figure of merit: NBCD efficiency (*P_{NB}* 1MW)

NB current multiplication (I_{NB} / P_{NB})

NB power to replace full plasma current

Other FNS indicators, not critical for SSOp

> Hot-thermal neutron yield NY_{NB} , s⁻¹ at full power P_{NBI}

$$\eta_{CD} = \frac{R_p I_{CD} \overline{n_e}}{P_{NB}} \times 10^{-20}$$

$$\eta_{I(P)} = \frac{I_{CD}}{I(P)_{NB}}$$
t
$$P_{SSO} = \frac{I_P}{\eta_P}$$

- \succ NB fueling α_{fuel} at full current (I_{NBI})
- \succ Hot / thermal ion burn-out ratio F_{fast} / F_{th}

> NB fusion power gain Q_{NB} (P_{NB}1MW) = EP energy *multiplication*

Second Technical Meeting on Long-Pulse Operation of Fusion Devices H&CD figures

ΟA

0.5+

0.2

0.4

0.6

Ψ

0.8

1.0

0.8

1.0

0 6

Ψ

Second Technical Meeting on Long-Pulse Operation of Fusion Devices H&CD

0.5+

0.2

0.4

0.2

0.4

W

0.6

0.8

1.0

EP profiles

EP energy profile: toroidal/poloidal circulation + deceleration

NBCD results

NBCD profiles vs NB aiming

NBCD results for FNS-ST

$E_{NB} = 100 \text{ keV} (D)$

	R _{NB} ,	Inclination	FW loss	I _{CD} / I _{NB} ,	I _{CD} / P _{NB} ,	P _{NB} , MW
	m	$\alpha_{_{NB}}$, deg		A/A	A/MW	$I_{CD} = I_{p}$
R ₀ = 0.5m	0.3	0	0.005	1226	12263	82
T _e = 5keV	0.3	30	0.008	14101	141014	7.1
	0.3	40	0.009	15776	157760	6.3
$n_e = 10^{20} m^{-3}$	0.4	0	0.005	1873	18728	53.4
B ₀ = 1T	0.4	30	0.006	13560	135602	7.4
	0.5	0	0.008	2243	22434	44.6
I _n = 1MA	0.5	30	0.01	11362	113623	8.8
Ч	0.6	0	NBCD = 0 (cut-off)			
	0.6	30	0.03	5283	52831	18.9
	0.6	40	0.03	14721	147213	6.8

Full replacement of current by NBCD in low aspect ST plasma is only possible for inclined NB axis, due to max aver. pitch of EP population

R "cut-off" for horizontal injection (in ST): no passing EP (only bananas)

Off-axis injection is more efficient than on-axis, GSE solution - more stable! (to check) Second Technical Meeting on Long-Pulse Operation of Fusion Devices
H&CD

ST results

NBI integral performance analysis (optimized NB aiming)

Beam full energy: $E_b = 100, 120, 140 \text{keV}$

• Lower beamline perf leads to higher total NB perf (NBCD prevails!)

Second Technical Meeting on Long-Pulse Operation of Fusion Devices H&CD

ST results

RESUME

- NBI is a viable tool for sustaining fully non-inductive discharges in LP/SS plasmas, albeit rather expensive
- SSOp is supposed to be accessed in FNS by NBI (NBCD + heating + profiles control)
 For all FNS designs, high values of MF are critical to achievde SSOp;
- Off/on-axis NB produce EP population, direct parallel current is driven predominantly by 'passing' hot ions ('trapped' ions drive NB-BS current)
- \Box NBCD and other perf values (Q_{NB} , NY) are guided by incident EP spatial/pitch profiles
- Beam parameters can be tuned either to get maximum NBCD or optimum current profile – peaked/hollow/uniform
- Small FNS based reactors can be more competitive, their design being driven by plasma physics rather than technology

Thanks for your attention

https://sites.google.com/view/btr-code/home

FNS-ST, DEMO-FNS and ITER parameters

	FNS-ST	DEMO-FNS	ITER
Major radius R, m	0.5	2.75	6.2
DT-fusion option	Beam driven fusion	Beam driven and thermonuclear fusion	Thermonuclear fusion
Heat transfer from alphas to plasma	no	yes small	yes BPP valuable
Divertor configuration	DN	DN	SN
Toroidal field at the VV center, T	1.5	5	5.3
Fusion power, MW	1 - 3	30 - 40	500
Auxiliary heating power <i>P</i> _{AUX} , MW	~ 8 - 10	30 - 40	50 - 70
Fusion energy gain factor Q	~ 0.2	~ 1	~ 10
Shielding at high field side, m	No shield	~ 50 cm	60 – 80cm
Type of magnetic system	CuCrZr	LTS	LTS
Neutron loading Γ_n , MW/m ²	0.2	0.2	0.5
Neutron fluence at lifetime, MWy/m ²	~ 2 (*)	~ 2	0.3