High-power and long-pulse operation of ICRH system in EAST tokamak

by

Lunan Liu^{1*}

Xinjun Zhang¹, Chengming Qin¹, Yuzhou Mao¹, Shuai Yuan¹, Wei Zhang¹, Hua Yang¹, Yongsheng Wang¹ And EAST Team¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

Presented at the 2nd Technical Meeting on Long-Pulse Operation of Fusion Devices OCT. 14-18, 2024, Vienna, Austria

Oct 16, 2024

*E-mail: <u>liulunan@ipp.ac.cn</u>

How to achieve long-pulse high-power ICRF system operation

- 1. Better coupling
- 2. Spectrum control
- 3. Water cooling
- 4. Fast impedance matching and load-variation tolerance transmission system

ASIPP

New ICRF antenna with low $k_{//}$

Antenna phase measurement and control

Water cooling of limiter and Faraday screen

Antenna fast matching and load tolerance transmission system

The heating efficiency shows higher with lower $k_{//}$ for old ICRF antenna

Plasma potential for those two shots

Old ICRF antenna in Port B

- The stored energy and the neutron radiation is larger with lower $k_{//}$;
- The power radiation and the plasma potential is smaller with lower $k_{//}$;
- Decreasing $k_{//}$ could increase heating efficiency.

The new ICRF antenna designed and operated in EAST

- The new antenna shows better coupling and heating efficiency
 - The coupling exponent increase with the decrease of $k_{//}$;
 - The new antenna display higher coupling and better heating.

 $k_{//}$ =13 m^-1 \rightarrow $k_{//}$ =7.2 m^-1

ASIPP

New ICRF antenna with low $k_{//}$

Antenna phase measurement and control

Water cooling of limiter and Faraday screen

Antenna matching and load tolerance transmission system

Antenna phasing measurement using antenna strap probe based diagnostic system

ICRF antenna phasing detecting system

Nuclear Engineering and Technology 54 (2022) 3614-3619

ICRF antenna strap probe

- Antenna phasing detected by antenna strap probes which can avoid the influence of the standing waves.
- The chip of AD8302 have a good detection accuracy in two signals phasing detection.

Design of phase feedback control system for ICRF system in EAST

Nuclear Engineering and Technology 56 (2024) 216–221

- Achieve antenna phase feed back control.
 - Strap probe based diagnostic;
 - Signal conditioning module based FPGA;
- Best heating happens at 180°

New ICRF antenna with low $k_{//}$

Antenna phasing measurement and control

Water cooling of limiter and Faraday Screen

Antenna matching and load tolerance transmission system

9

New kind of ICRF antenna limiter with CFC materials

- The tiles is thin, better for the heat taken away.

The old Faraday Screen corrosion during EAST experiments

- A structure similar to the old Faraday Screen has been rebuilt to simulate the water flux through the tube.
- For the old Faraday Screen, the water can not go through a large part of the tubes (blue part)

Optimization of Faraday Screen to avoid dead zones

- Adding barriers to make the water come through every tubes with larger speed;
- Simulated results show that 6 barriers is one of the best choice for increasing the minimum speed in the tubes.

Nuclear Engineering and Technology 55 (2023) 2621-2627

Thermal analysis of the new Faraday Screen in EAST

Faraday Screen corrosion

Simulated static temperature of the Faraday Screen

Plasma heat flux: ~0.25 MW/ m^2 (by EMC3-EIRENE for shot 107554); RF lose: 0.02 MW/ m^2 (CST with 1 MW)

- Without barriers: the static temperature of Faraday tubes is up to 900°C with water pressure of 2 bar;
- With barriers: the static temperature of Faraday Screen tubes is low, but the temperature in top/bottom plate is up to 900 °C.

Nuclear Engineering and Technology 55 (2023) 2621-2627

Thermal analysis of the new Faraday Screen with top/bottom plate cooling

- The minimum water speed in the top/bottom plate is 0.5 m/s with 2 bar water pressure;
- Temperature of Faraday Screen is less than 300 °C.

Temperature evolution of the new Faraday Screen in long pulse of EAST experiments

Temperature by IR camera

The highest point of FS temperature evolves

- The temperature profile of ICRF antenna with 0.8 MW power :
 - It is less than 400 $^{\circ}$ C in top plate with water cooling ;
 - It is up to 1000 °C in the top plate without water cooling;
 - In Faraday Screen tubes regain, it is less than 400 °C.

New ICRF antenna with low $k_{//}$

Antenna phasing measurement and control

Water cooling of limiter and Faraday screen

Antenna fast matching and load tolerance transmission system

Triple liquid stub tuners for ICRF antenna impedance matching

Triple oil stub tuners for ICRF antenna impedance matching

Schematic diagram of the oil loop.

Before the year of 2021

- Advantages: High voltage and high current tolerant in long pulse;
- Dis-advantages: Slow moving of the oil level.

Impedance matching based on triple liquid stub tuners

ICRF long pulse operation

- Impedance matching by on triple liquid stub tuners :
 - Calculate the oil level to matching the antenna load;
 - Impedance matching achieved between two shots;
 - During long pulse operation, the change of antenna load leads to large reflection power.

Upgrade of matching system by double stub capacitors

Matched regain by double stub of capacitors

Lower VSWR regain achieved by liquid stub

- The double stub capacitors can match yellow regain of the smith chart, which can satisfied the need for impedance matching in EAST.
- Variable water-cooled capacitors had been used.

Real-time impedance matching by double-tube of capacitors

- Real-time impedance matching of ICRF system achieved:
 - Impedance measurement, motor controlling;
 - Both vacuum and plasma situation, the matching had been achieved in 1 second;
 - It can not match the impedance changing during ELMs and L-H mode transition.

The characteristic of the 3-stub impedance matching system

2024 Nucl. Fusion 64 066025

The schematic diagram for one antenna strap of the ICRH system in EAST

- Load-variation tolerance of 3-stub tuners appeared with larger input impedance
 - The power reflection ratio is below 5 % when the input impedance varied from 10 Ω to 20 Ω ;
 - Increasing the input impedance to increase the load-variation tolerance.

The characteristic of the 30Ω to 50Ω transmission line in different location

Relationship between the input impedance and location in the standing wave (The antenna load chosen as 1 Ω).

impedance by 1.6 times when it stored at the maximum

voltage of standing wave.

The characteristic of the T-point structure in different location

The schematic diagram for one antenna strap of the ICRH system in EAST

- Left: the VSWR contours in case of symmetric resistive $Z1 = Z2 = 5\Omega$; right: the impedance at T-point along the dotted line in the left figure.
- The T-connector structure can **double the input impedance** when stored it at the maximum voltage of standing wave.

Load-variation tolerance character appeared in EAST experiments

2024 Nucl. Fusion 64 066025

The ICRF system in EAST tokamak show the load-

variation tolerance character

- The impedance varied from 8 Ω to 16 $\Omega,$ the reflection power is less than 7%;
- The measurement results matched the calculated results well.

High-power and long-pules operation of ICRF system in EAST

• High power of 2.2 MW, low power radiation 0.1MW/ 1 MW, remarkable heating effect;

ASIPP

• Static state operation for 310 s.

Conclusion

 Better coupling, efficient water cooling, fast impedance matching and load-variation tolerance transmission system help us to achieve high power and long pulse operation of ICRF system in EAST.

Thanks for your attention

