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As magnetic surfaces break, an individual magnetic field
line covers much of the plasma volume but requires many
toroidal transits to do so. Called magnetic field line chaos.

Electrons move rapidly along field lines compared to ions
and the electric potential Φ(ℓ) ∼ Te/e must depend on the
distance ℓ along each line to enforce quasi-neutrality.

Neighboring chaotic field lines exponentiate apart and have
different Φ(ℓ), which implies large E⃗ × B⃗ drifts.



Faraday’s Law Is Of Advection-Diffusion Form

Mathematics implies an arbitrary electric field can always be represented as

E⃗ = −u⃗⊥ × B⃗ − ∇⃗Φ+
Vℓ

2π
∇⃗φ, so

∂B⃗

∂t
= −∇⃗× (u⃗⊥ × B⃗)−

∇⃗Vℓ

2π
× ∇⃗φ

Vℓ is the loop voltage, is constant along the magnetic field line, given by E⃗ ·B⃗, and must

be non-zero for reconnection. When Vℓ = 0, u⃗⊥ is the magnetic field line velocity.

Faraday’s law is of the advection-diffusion form. When u⃗⊥
is chaotic, reconnection only depends on η logarithmically;
has a timescale about ten times the ideal timescale.

Note E⃗ + v⃗ × B⃗ = ηj⃗ implies ∂B⃗/∂t+ ∇⃗ × (v⃗ × B⃗) = (η/µ0)∇2B⃗.

2D differs fundamentally from 3D reconnection.
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Magnetic Surfaces Can Rapidly Break

Ideal non-axisymmetric perturbations create a large variation in separation between

neighboring surfaces near rational magnetic surfaces. An arbitrarily small
resistivity η/µ0 can diffuse lines at the locations of closest
approach. The irrational surfaces are the last to break and
become Cantori, which have gaps called turnstiles.

       

Ideal perturba,on near a   Cantorus in standard map 
ra,onal magne,c surface    MacKay et al, Physica 13D, 55 (1984).  

Huang et al, PoP 20,032513 (2022).      
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Fig. 3. A c a m o r u s  of  the s t andard  m a p  at  k = 1.001635 = kg 
+ 0.03 for v = 1/3, 2. 

2-6 is a local theory of flux across a closed curve. 
The second part, consisting of sections 7-11 ini- 
tiates a global theory of transport. 

In section 2 we define the flux, and introduce 
partial barriers. The flux across partial barriers 
passes through 'turnstiles', which play a central 
role in the theory. The construction from cantori 
of partial barriers with turnstiles is described and 
illustrated. In section 3 the theory is put on a 
firmer foundation with the introduction of sta- 
tionary action principles, and in section 4 it is 
shown that the flux across partial barriers is given 
by differences in action ZlW, that Mather intro- 
duced for cantori [8]. The properties of cantori and 
partial barriers are related to the properties of 
periodic orbits. Limiting properties of the AW for 
the periodic orbits provide strong evidence that 
the cantori with noble frequency are the most 
important partial barriers. The relation between 
periodic orbits and cantori also provides a practi- 
cal method of finding cantori, constructing ap- 
proximate partial barriers, and evaluating the flux 
across them. In section 6, this is illustrated for the 
example of the standard map, introduced in sec- 
tion 5. 

In section 7 we introduce a global theory of 
transport that is radically different from previous 
theories. The properties of long term transport are 
derived from the properties of the flux on the basis 
of a Markov model and a related circuit model. 
The phase space is divided into separate irregular 
components by invariant circles forming complete 
barriers. Each irregular component is itself subdi- 
vided into regions by partial barriers with turn- 
stiles formed from the more important cantori. In 
the Markov model transition probabilities between 
these regions are determined by ratios of areas of 
turnstiles to areas of regions. In the circuit model 
the successive transitions are replaced by a con- 
tinuous flow of charge between capacitances to 
ground, representing the regions, through resistors 
representing the turnstiles. 

Explanations are given of multiple time con- 
stants and power laws for decay in section 8, 
and formulae for the mean transit time from one 
region of an irregular component to another are 
presented and compared with numerical experi- 
ment in section 9. In section 10 we discuss 
shortcomings of the model, and the sort of modifi- 
cations that will have to be made. In section 11 we 
obtain a scaling law for near critical parameter 
values of one parameter families of maps. This 
resolves an apparent discrepancy between results 
of Chirikov [9] and Greene [10]. 

Our studies show that there can be considerable 
order in irregular motion. This is particularly true 
near cantori with small gaps, like those near the 
invariant circles that form the boundaries of irreg- 
ular regions. The partial barriers define an ap- 
proximate or adiabatic invariant. Where the 
turnstiles are aligned it is possible to consider 
them together as a chimney. Motion across the 
associated partial barriers is then restricted to this 
chimney, where there is transport in both direc- 
tions. Elsewhere the motion resembles that on 
invariant circles, being interrupted only when the 
phase point arrives in a turnstile. It is possible, 
however, that a better adiabatic invariant may be 
obtained by a choice of partial barriers which 
shares out the flux between all the gaps. 

MacKay et al, Physica 13D, 55 (1984): “Most of the gaps in a cantorus are very
small, since their total length is finite. Even when there are large gaps, orbits can
take a long time to get through.”
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Temperature Gradients Remain When B⃗ Is Chaotic
Nardon et al, Plasma Phys. Control. Fusion 63,115006 (2021), analyzed an intentional disruption in
JET triggered by a massive gas injection of argon and found large temperature gradients
remain as surfaces break.
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Nardon et al, Plasma Phys. Control. Fusion 63, 115006 (2021) 
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Figure 4. Poloidal cross-section of the electron temperature, with a Poincaré cross-section (white dots) and the q= 2 and LCFS (calculated
for the axisymmetric part of the magnetic field, green lines) overlayed, in the injection plane at t= 0 (left), 2.78 (middle) and 4.33 ms (right)
for Cases A, B and C, which are identical in this phase (see table 1). The colour scale is saturated at 0.5 keV so as to highlight the dynamics
in the cold regions.

Figure 5. Poloidal cross-section of the electron temperature, with a Poincaré cross-section (white dots) and the q= 2 and LCFS (calculated
for the axisymmetric part of the magnetic field, green lines) overlayed, in the injection plane at t= 4.92 (left), 5.95 (middle) and 6.39 ms
(right) for Case A (see table 1). The colour scale is saturated at 0.5 keV so as to highlight the dynamics in the cold regions.

Figure 6. Poloidal cross-section of the electron temperature, with a Poincaré cross-section (white dots) and the q= 2 and LCFS (calculated
for the axisymmetric part of the magnetic field, green lines) overlayed, in the injection plane at t= 4.62 (left), 4.91 (middle) and 5.09 ms
(right) for Case B (see table 1). The colour scale is saturated at 0.5 keV so as to highlight the dynamics in the cold regions.
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Figure 2. Overview of the disruption phase of JET pulse 85 943.
From top to bottom: plasma current Ip, radiated power Prad,
line-integrated electron density nel from three lines of sight of the
interferometry system (the signal is not valid anymore after 6.3 ms),
magnetic fluctuations dB/dt (given here in terms of Mirnov coil
voltage), and electron temperature Te for four channels of the fast
ECE radiometer (the radii correspond to the mapped equilibrium at
22.3852 s in ‘JET absolute time’).

from the central ECE channel. This follows a sharp increase
in Prad up to about 500 MW within 1 ms. A burst of mag-
netic fluctuations is visible on the Mirnov coil signal for a
period of about 1 ms after the TQ, a period during which Prad
keeps rising fast, eventually peaking at 2.3 GW. Ip also peaks,
approximately at the same time as Prad. During the ensuing
current quench (CQ) phase, a RE beam is generated, resulting
in a short Ip plateau at about 1 MA around 12 ms.

3. Model

In order to simulate this experiment, we use the JOREK
3D non-linear MHD code, which is extensively described in
[10, 27] and references therein. The specific model used in
this work is the same as described in [9]. It is a reduced
MHDmodel which includes an equation for the impurity dens-
ity (argon here). The latter is summed over all charge states.
Impurities are transported by diffusion as well as by advec-
tion at the same velocity as the main ions. A coronal equilib-
rium (CE) assumption is used to get the impurity charge state
distribution and the associated energy sinks and sources from
radiation, ionization and recombination, using data from the
open ADAS database [28]. A collisional-radiative (CR) model

evolving the charge state distribution according to ionization
and recombination rates has been implemented recently in
JOREK [29]. Comparisons between the CE and CR models
show that the CE model typically predicts a somewhat slower
thermal collapse during an MMI [29]. Future studies aiming
at quantitative validation will use the CR model.

In terms of simulation parameters, for the resistivity we use
η ≃ 2 × ηSp(min[Te,0.7]), where ηSp is the Spitzer resistiv-
ity and Te is the electron temperature in keV. This way, the
resistivity is realistic for Te ! 0.7 keV, while very low res-
istivities, which are numerically challenging, are avoided. The
factor 2 is a simplified way to account for the fact that only
passing particles carry the current (instead of a constant factor,
a profile would be more accurate; the value 2 used here cor-
responds roughly to the inverse of the passing fraction near
the edge of the plasma, which is the most important region for
the pre-TQ and early TQ phases). Ohmic heating is included.
The perpendicular kinematic viscosity (which is independent
of temperature here, in contrast with previous works on MMI-
triggered disruptions with JOREK [6–9, 17, 18]) and heat dif-
fusivity are of order 3 and 2 m2 s−1 respectively, which might
be considered as representative of underlying turbulent trans-
port, although the characteristics of the latter during an MGI
are unknown. A Spitzer-Härm parallel heat conductivity is
used. The most unrealistic aspects of the model are probably
the particle diffusivity, set to the large value of 30 m2 s−1 for
both main ions and argon, and the fact that we artificially damp
the parallel flow via a large hyper-parallel-viscosity. These
choices have been made in order to avoid numerical instabil-
ities. Hyper-resistivity and hyper-perpendicular-viscosity are
also used at moderate level in order to smooth structures finer
than the grid resolution.

For the poloidal discretization, which is done via cubic
Bézier finite elements [10, 30], a flux-aligned grid extending
into the scrape-off layer (SOL)withmoderate resolution (3242
elements) is used, and for the toroidal discretization, Fourier
harmonics from n= 0 to n= 10 are included. The simulations
are run in free-boundary mode, making use of the JOREK-
STARWALL coupling [10, 31], and including a rather real-
istic, although axisymmetric, model of the JET resistive wall.
It can be noted, e.g. in figure 4 below, that the last closed flux
surface (LCFS) in the simulations is defined by the bound-
ary of the computation domain on the high field side midplane
instead of the X-point. This is not expected to affect results
dramatically but should be improved in future studies.

One of the main limitations of the model is that it does not
treat gas dynamics and is therefore not able to simulate the
propagation and penetration of neutral argon from DMV1 into
the plasma (for modelling of this process, see [25, 26, 32, 33]).
Instead, argon is deposited via a volumetric source term and
transported by diffusion and convection at the same velocity as
themain plasma. At the beginning of the simulations, the argon
is always deposited in the SOL. More precisely, the argon
source is a Gaussian centred on R= 3.5 m, Z= 1.1 m (indic-
ated by the cross in figure 3—note that in reality the major
radius of the gas arrival is closer to 3.25 m) and on the toroidal
position of DMV1, with a width of 6 cm poloidally and 1.4 rad
toroidally. In some simulations, as will be detailed below, the

3

4



Quasi-Neutrality Electric Field

The ideal response of ions and electrons is related to the electric field by the equations

E⃗ = −v⃗h × B⃗ +
1

e

(
mh

dv⃗i

dt
−

∇⃗ · p↔i

n

)
for ions

= −v⃗e × B⃗ +
1

e

∇⃗pe

n
, for electrons

mi

dv⃗i

dt
= j⃗ × B⃗ − ∇⃗ · p↔ eliminating E⃗

∂Φ

∂ℓ
= −

1

en

∂pe

∂ℓ
E|| equation

= −
1

e

(
∂ lnn

∂ℓ
Te +

∂Te

∂ℓ

)
with pe = nTe.

Where ∂Te/∂ℓ is large Φ = −(c0 + Te)/e.

When ∂Te/∂ℓ = 0, then Φ = −(Te/e) ln (n/n0).

Quasi-neutrality potential Φ ≈ −
〈
Te
〉
/e on each line.
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Transport due to Quasi-Neutrality Electric Field
Consider a small spherical region within a volume in which B⃗ is chaotic. Each B-line
that passes through the sphere eventually comes arbitrarily close to every point in the
entire chaotic volume by a long trajectory x⃗(ℓ) divergent from that of neighboring lines.

Φ(ℓ) =
〈
Te

〉
/e given by an integration of ∂Φ/∂ℓ = −(∂pe/∂ℓ)/en from each

plasma point. Implies two types of V⃗q ≡ (B⃗ × ∇⃗Φ)/B2 transport effects.

1. A correlated flow on the large scale of the Te variation, aT comparable to the plasma
radius, Vls ∼ Te

eBaT
.

2. A diffusive transport Dq ≈ ∆2/τcor due to the short scale, ∆ over which Φ is
correlated across B⃗. Correlation time τcor ≈ ∆/|V⃗q| and |∆Φ| ≈

〈
Te

〉
/e the

variation in Φ across the field lies. Expected diffusion approximately Bohm-like:

Dq ≈
〈
Te

〉
eB

= 103 Tkev
BTesla

m2

s
.

Simulations of B = 3 T JET argon-induced disruptions, Nardon et al, NF 63, 056011
(2023) found a D ≈ 103m2/s and a large scale flow ≈ 5000m/s.
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Summary

• When magnetic surfaces break in a disruption, the mag-
netic field lines become chaotic.

• Each line in a chaotic volume comes arbitrarily close it ev-
ery point in that volume and exponentiates away from a
neighboring line as exp (σ(ℓ)).

• Electrons move faster than ions along B⃗. Quasi-neutrality
requires an electric potential ∂Φ/∂ℓ = (∂pe/∂ℓ)/en to bal-
ance electron pressure with |Φ| ∼

〈
Te
〉
/e.

• When σ|∂pe/∂ℓ| is large, the potential Φ has a short corre-
lation across B⃗, which gives diffusion Dq ≈

〈
Te
〉
/eB and

large scale flow Vls ≈ Dq/aT , where Te varies on scale aT .
• Diffusion and flow spread impurities, which E⃗ × B⃗ drift.
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