ITER Project Status

A Pull Table A TO A

Alberto Loarte

Reference Internal Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024 1/23 On behalf of the ITER Organization, ITER Members' experts, ITER Scientist Fellows and Collaborators

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

Outline

- **Outli**
ITER Project Status and introduction
to New Baseline
New Baseline Research Plan
-
-
- 1st Deuterium-Tritium Phase
- **Conclusions**

rd IAEA Technical Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024 3/23 ITER project status and introduction to new baseline

ITER Project Status

- \triangleright ITER machine assembly started in May 2020
- **→ 1st Machine Sector assembled &** installed in May 2022
- **▶ Problems: Vacuum Vessel &Thermal** Shield:
	- **Repairs progressing well**
	- Re-think of strategy \rightarrow new baseline
- \triangleright In the meantime, many ITER components completed

3rd IAEA Technical Meeting on P

VV Bevel repair

VV Sector bevels corrected to meet dimensional requirements for the VV Sectors assembly: Welding and NDE

\triangleright Sector 7 and 5 repair completed \triangleright Restart of sector assembly in October 2024

Magnet Status

Central Solenoid (USDA) • 4 modules delivered, 3 (1 spare) at manufacturing stage

• 3 modules stacked in preassembly building

19 Toroidal Field Coils (F4E-JADA) • 6 & 5 in temporary position in PIT

- 6 Poloidal field Coils (F4E-CNDA-RFDA) Feeder compor
6 & 5 in temporary position in PIT 68 81 % completed • 6 & 5 in temporary position in PIT
- 1 to 4 in storage

Feeder components (CNDA)

81 % completed 18 Correction Coils (CNDA) 12 coils delivered.

Other Systems Gyrotons

3rd IAEA Technical Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024

Ttera china eu india japan korea russia usa

New Baseline Rationale

- **New Baseline Rationale**
 **Conditional Robust achievement of Projects' goals, in view of past challenges

(delays due to the Covid-19 pandemic, technical challenges in completing first-of-a-kind components and in nuclear l Solution New Baseline Rationale

Robust achievement of Projects' goals, in view of past challenges

(delays due to the Covid-19 pandemic, technical challenges in

completing first-of-a-kind components and in nuclear licen COMPRET MANGE SET ALLO NET ALLO New Baseline Rationale

Conditional Reliable assembly - commissioning - operation and in muclear licencing)**

Conditional Realistic & reliable assembly - commissioning – operation

Conditional Realistic & reliable assembl **Achievement of Projects' goals, in view of past challenges**

(delays due to the Covid-19 pandemic, technical challenges in

completing first-of-a-kind components and in nuclear licencing)
 \Box Realistic & reliable assem **New Baseline Ration**
Robust achievement of Projects' goals, in v
(delays due to the Covid-19 pandemic, te
completing first-of-a-kind components and in r
Realistic & reliable assembly - commissioning
Achievement of earlies Stepmin Transform of Projects' goals, in view of past challenges

(delays due to the Covid-19 pandemic, technical challenges in

completing first-of-a-kind components and in nuclear licencing)
 \square Realistic & reliable a obust achievement of Projects' goals, in view of past challenges
delays due to the Covid-19 pandemic, technical challenges in
ompleting first-of-a-kind components and in nuclear licencing)
ealistic & reliable assembly - c
-
- rd IAEA Technical Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024 8/23

Stration (DT-1 & DT-2)

everment of specific Project goal(s) \rightarrow Q = 10, 300-500s

1/100 of present end-of-life) $\rightarrow \sim 3$ 10²⁵ neu delays due to the Covid-19 pandemic, tecnnical challenges in

ompleting first-of-a-kind components and in nuclear licencing)

ealistic & reliable assembly - commissioning – operation

chievement of earliest start of ITER **Example 11 and 12** or J. Solution 19 and 19 a ealistic & reliable assembly - commissioning - operation

chievement of earliest start of ITER Nuclear phase (D-D) & <u>minimize</u>

chnical risks (SRO)

tepwise Safety Demonstration (DT-1 & DT-2)
 \Box DT-1 focuses on the ac
- -
	-
	-
	-

Key Elements of the New Baseline - I
Change of first wall material Be \rightarrow W

Change of first wall material Be \rightarrow W

Sexet As Alternation Serverse With Be as PFC in ITER (R. A. Pitts, PSI 2024)

Seattor relevant material more resilient to transients (higher T_{melt})

Major benefit in assembly complexity and avoid costly later wall

ch **Example 15 Key Elements of the New Baseline - I**
Change of first wall material Be \rightarrow W
Reactor relevant material more resilient to transients (higher T_{melt})
Major benefit in assembly complexity and avoid costly la **Elements of the New Baseli**
Change of first wall material Be \rightarrow W
Reactor relevant material more resilient to transient
Major benefit in assembly complexity and avoid co
ngeout <u>but</u> higher risk of plasma contamination Change of first wall material Be \rightarrow W

Reactor relevant material more resilient to transients (higher T_{melt})

Major benefit in assembly complexity and avoid costly later wall

ngeout <u>but</u> higher risk of plasma contam **before 2011**

ial Be \rightarrow W

io transients (higher T_{melt})

id avoid costly later wall

ination and no oxygen getter

A. Pitts, PSI 2024)

all panels within DT required

before potential "gap bridging"

walls is much st **Change of first wall material Be** \rightarrow **W**
actor relevant material more resilient to transients (higher T_{me}
ajor benefit in assembly complexity and avoid costly later wal
eout <u>but</u> higher risk of plasma contamination an Reactor relevant material more resilient to transients (higher T_{melt})

Major benefit in assembly complexity and avoid costly later wall

changeout <u>but</u> higher risk of plasma contamination and no oxygen getter
 □ Seve Major benefit in assembly complexity and avoid
angeout <u>but</u> higher risk of plasma contamination
Several issues with Be as PFC in ITER (R. A. Pitts
 \triangleright Erosion lifetime \rightarrow Replacement of first wall panels
 \triangleright Trit Reactor relevant material more resilient to transients (higher T_{melt}) Major benefit in assembly complexity and avoid costly later wall **Change of the New Baseline - I
Change of first wall material Be** \rightarrow **W
Reactor relevant material more resilient to transients (higher T_{melt})
Major benefit in assembly complexity and avoid costly later wall
changeout <u>b**</u>

-
-
-
- **rd IAEA Technical Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024** 9/23
 Proposits
 Lower margin in I_p before potential "gap bridging"
 tion current quench)
 lak operation with W walls is much st Changeout but higher risk of plasma contamination and no oxygen getter
 \Box Several issues with Be as PFC in ITER (R. A. Pitts, PSI 2024)
 \angle Erosion lifetime \rightarrow Replacement of first wall panels within DT required

-

Key Elements of the New Baseline - II
Rease in H&CD installed power and change of power mix
with the face consciousntal and consumer and totion of side and

Increase in H&CD installed power and change of power mix

Higher flexibility for experimental programme, reduction of risks and achievement of Q = 10 with low neutron fluence

Updated ITER Research Plan (proposal to ITER Council)

Machine configuration and research plan to gradually retire risks and provide robust path to objectives with intermediate milestones

china eu india japan korea russia usa

rd **IAEA Technical Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024** 12/23

12/23 Objectives and Research Plan for Start of Research Operation

Objectives for SRO

(Start of Research Operation = Start of Research Operation Programme)

- \triangleright Demonstration of capability to operate plasma scenarios up to 15 MA/5.3 T \rightarrow Full Magnetic Energy operation
- Exploration of the H-mode operational space up to 7.5 MA/2.65 T in deuterium plasmas
- \triangleright Commissioning of H&CD (ECH and ICH) systems up to nominal power levels \sim 50s
- \triangleright Identification and optimization of error field correction due to machine assembly and intrinsic non-toroidally symmetric features of ITER's design
- \triangleright Characterization of disruption loads (~ 15 MA/5.3 T) \rightarrow in-vessel component verification
- \triangleright Demonstration of effective disruption mitigation up to 15 MA/5.3 T
- (ECH and ICH) systems up to nominal power levels \sim
ation of error field correction due to machine
on-toroidally symmetric features of ITER's design
btion loads (\sim 15 MA/5.3 T) \rightarrow in-vessel component
e disruption m \triangleright Demonstration of required divertor and first-wall protection and core impurity control methods necessary for high-performance H-mode scenarios in DT-1

Inertially cooled wall for <u>start of operation</u> (not for DT)
Sioning of control, protection and disruption mitigation system Commissioning of control, protection and disruption mitigation system with lower risks

Disruption Risk Mitigation/Retirement in SRO

Disruption Risk Mitigation/Retirement in SRO
 \Box Effective risk mitigation by DMS commissioning with inertially cooled W PFCs requires

approaching <u>as far as possible</u> DT conditions \rightarrow many <u>but not all</u> risks reti

Optimization of disruption mitigation strategy with W wall ?

rd INCOCATON IN TAIT TOT THE TRANSP TRANSPORT THE TRANSPORT OF THE TRANSPORT OF Plasma Disruptions and their Mitigation 3- Sept-2024 17/23 Objectives and Research Plan for 1st Deuterium Tritium Phase

Objectives for DT-1

-
- Dijectives for DT-1

⇒ Reproducible operation with fusion power of 500 MW Q ≥ 10, t_{burn} ≥ 300s

⇒ Demonstration of high duty operation with fusion power of 250 MW t_{burn} ≥ 300s

⇒ Qualification of takemak componentals
- reflects and nuclear heating (diagnostic and
ng plasmas physics and associated control and load
ominal Q \geq 10 operation
ssel tritium management, measurement of dust
ominal Q \geq 10 operation
 \geq 10 and in high-dut Demonstration of high duty operation of high duty operation of for DT-1

→ Demonstration of high duty operation with fusion power of 250 MW t_{burn} ≥ 300s

→ Qualification of tokamak components/systems in Q ≥ 10 operatio Dijectives for DT-1

> Reproducible operation with fusion power of 500 MW Q ≥ 10, $t_{burn} \ge 300s$

> Demonstration of high duty operation with fusion power of 250 MW $t_{burn} \ge 300s$

> Qualification of tokamak components/sys **Assemant Objectives for DT-1**
Reproducible operation with fusion power of 500 MW Q \geq 10, $t_{burn} \geq$ 300s
Demonstration of high duty operation with fusion power of 250 MW $t_{burn} \geq$ 300s
Qualification of tokamak compone **Superviolent Common Symple Common Symple Starture Separation Common September 2013**

Demonstration of high duty operation with fusion po

Qualification of tokamak components/systems in C

assessment of neutron effects an **Characterization of high duty operation with fusion power of 500 MW Q 2 10,** $t_{burn} \ge 300s$ **

> Demonstration of high duty operation with fusion power of 250 MW** $t_{burn} \ge 300s$ **

> Qualification of tokamak components/systems i Chinder Solution Control Challenges in the Challenges in the producible operation with fusion power of 500 MW Q ≥ 10, t_{burn} ≥ 300s
Demonstration of high duty operation with fusion power of 250 MW t_{burn} ≥ 3
Qualifica** > Reproducible operation with fusion power of 500 MW Q ≥ 10, t_{burn} ≥ 300s

> Demonstration of high duty operation with fusion power of 250 MW t_{burn} ≥ 300s

> Qualification of tokamak components/systems in Q ≥ 10 oper Reproducible operation with fusion power of 500 MW Q ≥ 10, $t_{burn} \ge 300s$
Demonstration of high duty operation with fusion power of 250 MW $t_{burn} \ge 3$
Qualification of tokamak components/systems in Q ≥ 10 operation, inclu
a > Reproducible operation with ussion power of 300 MW Q ≥ 10, t_{burn} ≥ 300s

> Demonstration of high duty operation with fusion power of 250 MW t_{burn} ≥ 300s

> Qualification of tokamak components/systems in Q ≥ 10 oper
-
-
-

Start of DT-1 H + H+T phase

- \triangleright In DT-1 machine configuration will be near final (inc. water cooled wall) \rightarrow important to retire disruption risks asap
- Operation starts in H and moves to H+T to retire T- β seed RE risk
- ITER SPI simulations with DREAM (1D) predict avalanche gain

7.5 MA T-plasmas should not lead to large I_{RE} (< 100 kA)

TOTA china eu india japan korea russia usa

Disruption Risk Mitigation/Retirement in DT-1

- \triangleright Mitigation demonstrated to 15 MA/5. 3T in SRO (incl. hot tail at 20 keV)
- **Disruption Risk Mitigation/Retirement in DT-1**

> Mitigation demonstrated to 15 MA/5. 3T in SRO (incl. hot tail at 20 keV)

> T-beta decay and e-Compton effects assessed gradually and asap in DT-1 \rightarrow T in H (FPO-1) and 1) and gradual build-up of P_{fusion} (FPO-2+FPO-3)

TECH china eu india japan korea russia us

Strategy (H + T)

- Start from conditions with low RE risk 7.5 MA T-plasmas \rightarrow I_{RE} (< 100 kA)
- Demonstrate disruption + RE mitigation or avoidance at given %T and I_p
- Increase %T and I_p to ensure overlap of

 $RE_{T-seed} \times G_{avalanche}$ In successive steps

Strategy to increase W_{plasma} and P_{fusion} interleaving DD and DT

- Complete interest trategy to increase W_{plasma} and P_{fusion} interleaving DD and DT

→ Minimize use of neutron fluence to develop 50-50 DT H-mode by interleaving

D and D + T (< 50%) → gradual build-up of disruption-rel **The sum of the STAR and STAR And A**
 Minimize use of neutron fluence to develop 50-50 DT H-mode by interleaving

D and D + T (< 50%) \rightarrow gradual build-up of disruption-related T-effects

Validate plasma models/demonst Computer in the Updama and P_{fusion} interleaving DD and DT

→ Minimize use of neutron fluence to develop 50-50 DT H-mode by interleaving

D and D + T (< 50%) → gradual build-up of disruption-related T-effects

→ Validat **ng DD and DT**
de by interleaving
d T-effects
, %T ←→ predict
C.F. Maggi NF 2024,
-

Conclusions

- **Conclusions

Sonclusions

X** Repair of Vacuum Vessel Sector and Thermal Shields is proceeding well \rightarrow re-

X New baseline provides robust way to achievement of ITER' goals including: **Start of Sector and Thermal Shields is proceeding well** \rightarrow **restart of sector assembly to start in the next ~ month
New baseline provides robust way to achievement of ITER' goals including:
Realistic & reliable assembly** CONCLUSIONS

⇒ Repair of Vacuum Vessel Sector and Thermal Shields is proceeding well → restart of sector assembly to start in the next ~ month

⇒ New baseline provides robust way to achievement of ITER' goals including:
 CONCIUSIONS
Repair of Vacuum Vessel Sector and Thermal Shields is proceeding well \rightarrow re-
tart of sector assembly to start in the next ~ month
lew baseline provides robust way to achievement of ITER' goals including:
R **CONCIUSIONS**
Stepair of Vacuum Vessel Sector and Thermal Shields is proceeding well
tart of sector assembly to start in the next ~ month
lew baseline provides robust way to achievement of ITER' goals including
Realistic & **CONCIUSIONS**

In Repair of Vacuum Vessel Sector and Thermal Shields is proceeding well \rightarrow restart of sector assembly to start in the next ~ month

In New baseline provides robust way to achievement of ITER' goals inclu **Self-consistent goals**

Sepair of Vacuum Vessel Sector and Thermal Shields is proceeding well \rightarrow retart of sector assembly to start in the next ~ month

lew baseline provides robust way to achievement of ITER' goals in **CONCIUSIONS**

air of Vacuum Vessel Sector and Thermal Shields is proceeding well \rightarrow re-

t of sector assembly to start in the next ~ month

v baseline provides robust way to achievement of ITER' goals including:

Reali Repair of Vacuum Vessel Sector and Thermal Shields is proceeding well \rightarrow retart of sector assembly to start in the next ~ month
lew baseline provides robust way to achievement of ITER' goals including:

Realistic & reli
- -
	-
- -
	-
-
- tration (DT-1 & DT-2)

een developed jointly with Members' experts

nachine configuration and operational strategies for <u>risk</u>

pecially disruptions and their mitigation

experimental/modelling/theorical plasma physics

w Solution of excellent research Plan will change as R&D on open issues advances

> Validation of models are advertised by commissioning – operation

- Stepwise Safety Demonstration (DT-1 & DT-2)

> ITER Research Plan has b <p>✓ New baseline provides robust way to achievement of ITER' goals including:</p>\n\n Realistic & reliable assembly - commissioning – operation\n Stepwise Safety Demonstration (DT-1 & DT-2)\n\n<p>✓ ITER Research Plan has been developed jointly with Members' experts</p>\n\n Self-consistent goals, machine configuration and operational strategies for <u>risk</u> <u>mitigation/reitrement</u>, especially disruptions and their mitigation\n Based on state of the art experimental/modelling/theorical plasma physics\n\n<p>✓ Details of Research Plan will change as R&D on open issues advances</p>\n<p>✓ Validation of models and tools to predict ITER plasma behaviour and planning of experiments in essential for efficient implementation of Research Plan</p>\n<p **Starting and Starting Increase the Starting Inc. (1998)**
 Commissioning – operation
 Commission Experiment Starting Constant
 Commission (DT-1 & DT-2)
 ITER Research Plan has been developed jointly with Members' ex

Support by Members' fusion researchers is essential for ITER's success

Thank you for your attention !

**Additional Material
Material Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024** 24/23
24/23 Additional Material

Key Elements of the New Baseline - III
Crease in H&CD installed power and change of power mix

Increase in H&CD installed power and change of power mix

-
-

Overall Plan for SRO (incl. FP demonstration)

Fluence in DT-1 limited to \sim 3 10²⁵ neutrons (\sim 1% of final DT-2 goal)

D retention and removal in SRO

- $H \rightarrow D \rightarrow H$ measurement of retention (in B) and efficiency of removal strategy
- Removal ~ JET DTE -1 : Raised inner Strike Point + Ion Cyclotron Wall Conditioning

Neutron production in SRO D campaign

Total neutron budget to allow post-SRO water cooled in-vessel human access : 1.5 10²⁰ n

-
- About 6 times more neutron produced at 7.5MA/2.65T ($O+$ \square) than at 5MA/2.65T ($O+$ \square)
- Planning and execution of experiments with high D neutron production needs to be effective to achieve scientific goals \rightarrow good training for DT-1

TCP china eu india japan korea russia usa

Machine and ancillaries' configuration for SRO

- \triangleright Complete set of in-vessel coils and PS for both VS and and ELM control coils
	-

Use of W wall favours B_t values that provide effective central heating \rightarrow scenario development at 2.65 and 5.3 T SRO - Scenario development path
avours B_t values that provide effective central heating \rightarrow
scenario development at 2.65 and 5.3.T

Strategy for DT-1 H-mode development to $Q \ge 10$ t_{burn} ≥ 300 s

- Strategy for DT-1 H-mode development to Q ≥ 10 t_{burn} ≥ 300s

≻ Develop H-mode operation in q₉₅ = 3-6 range first at 2.65 T and then at 5.3 T

to ensure central ECH heating (W risk minimization)

≻ Develop D H-mode sc ategy for DT-1 H-mode development to Q ≥ 10 t_{burn} ≥ 30
Develop H-mode operation in q₉₅ = 3-6 range first at 2.65 T and then at 5
to ensure central ECH heating (W risk minimization)
Develop D H-mode scenarios, Strategy for DT-1 H-mode development to Q ≥ 10 t_{burn} ≥ 300s

≻ Develop H-mode operation in q₉₅ = 3-6 range first at 2.65 T and then at 5.3 T

to ensure central ECH heating (W risk minimization)

≻ Develop D H-mode sc
-
- ategy for DT-1 H-mode developn
Develop H-mode operation in $q_{95} = 3-6$ ran
to ensure central ECH heating (W risk minin
Develop D_H-mode_scenarios,_interleave
fluence consumption
Develop H-mode scenarios to ~ 50 s_durat
t Strategy for DT-1 H-mode development to $Q \ge 10$ t_{burn} ≥ 300s

> Develop H-mode operation in q_{9s} = 3-6 range first at 2.65 T and then at 5.3 T

to ensure central ECH heating (W risk minimization)

> Develop D H-mode ategy for DT-1 H-mode development to $Q \ge 10$ t_{burn} ≥ 300 s
Develop H-mode operation in q₉₅ = 3-6 range first at 2.65 T and then at 5.3 T
to ensure central ECH heating (W risk minimization)
Develop D H-mode scenario Strategy for DT-1 H-mode development to $Q \ge 10$ t_{burn} ≥ 300 s

> Develop H-mode operation in $q_{95} = 3-6$ range first at 2.65 T and then at 5.3 1

to ensure central ECH heating (W risk minimization)

> Develop D H-mo ent to Q ≥ 10 t_{burn} ≥ 300 s
e first at 2.65 T and then at 5.3 T
ization)
with DT, to minimize neutron
n (burn or high t_{HCD-max}) first and
10 short pulse
step to account for increasing
lifetime in development ategy for DT-1 H-mode development to Q 3
Develop H-mode operation in $q_{95} = 3-6$ range first at 2.6
to ensure central ECH heating (W risk minimization)
Develop D H-mode scenarios, interleaved with DT,
fluence consumption Strategy for D1-7 H-mode development to Q 2 10 t_{burn} 2 300s

> Develop H-mode operation in q₉₅ = 3-6 range first at 2.65 T and then at 5.3 T

to ensure central ECH heating (W risk minimization)

> Develop D H-mode sce ightarrow H-mode operation in q₉₅ = 3-6 range first at 2.65 T and then at 5.3 T

to ensure central ECH heating (W risk minimization)

ightarrow H-mode scenarios, interleaved with DT, to minimize neutron

fluence consum
-
-
-
- rios to ~ 50 s duration (burn or high t_{HCD-max}) first and
achievement of Q = 10 short pulse
igation at every I_p step to account for increasing
ects
risks impacting PFC lifetime in development
e (2 days/2 weeks) for T to ensure central ECH heating (W risk minimization)
Develop D H-mode scenarios, interleaved with DT, to minimize neutron
fluence consumption
Develop H-mode scenarios to ~ 50 s duration (burn or high t_{HCD-max}) first and
 Example 10 H-mode scenarios, interleaved with DT, to minimize neutron

fluence consumption

Nevelop H-mode scenarios to ~ 50 s duration (burn or high t_{HCD-max}) first and

then to 300s → earliest achievement of Q = 10 fluence consumption
Develop H-mode scenarios to ~ 50 s duration (burn or high t_{HCD-max}) first and
then to 300s \rightarrow earliest achievement of Q = 10 short pulse
Re-tune disruption mitigation at every I_p step to account

H-mode operation in DD

H-mode operation in DD

→ H-mode operation in D will be carried out with H-NBI in FPO-1 with 2.65 T

→ NBI power will be limited by shine-through at low I_p/<n_e>

(P_{LH} ~ 13-32 MW and P_{ECH} = 60-67 MW, P_{ICH} = 10-2 H-mode operation in DD

> H-mode operation in D will be carried out with H-NBI in FPO-1 with 2.65 T

> NBI power will be limited by shine-through at low I_p/<n_e>

(P_{LH} ~ 13-32 MW and P_{ECH} = 60-67 MW, P_{ICH} = 10-20

NBI power will be limited by shine-through at low I_p /<n_e>

 $(P_{LH} \sim 13-32$ MW and $P_{ECH} = 60-67$ MW, $P_{ICH} = 10-20$ MW)

- Strategy to interleave DD and DT I
use of neutron fluence to develop 50-50 DT H-mode
by D and D + T (< 50%) H-mode scenarios Strategy to interleave DD and DT - I
 \triangleright Minimize use of neutron fluence to develop 50-50 DT H-mode

scenarios by D and D + T (< 50%) H-mode scenarios

I Use %T \leq 20 as intermediate step between DD and 50-50 DT to Strategy to interleave DD and DT - I
Minimize use of neutron fluence to develop 50-50 DT H-mode
scenarios by D and D + T (< 50%) H-mode scenarios
Use %T \leq 20 as intermediate step between DD and 50-50 DT to
understand/ Strategy to interleave DD and DT - 1

> Minimize use of neutron fluence to develop 50-50 DT H-mode

scenarios by D and D + T (< 50%) H-mode scenarios

■ Use %T ≤ 20 as intermediate step between DD and 50-50 DT to

underst Strategy to interleave DD and DT - I
Minimize use of neutron fluence to develop 50-50 DT H-mode
scenarios by D and D + T (< 50%) H-mode scenarios
Use %T \leq 20 as intermediate step between DD and 50-50 DT to
understand/
-

- Strategy to interleave DD and DT II
d DT H-modes to identify I_p level leading to Q = 10 before
Q = 10 in DT **Strategy to interleave DD and DT - II**
 \triangleright Use DD and DT H-modes to identify I_p level leading to Q = 10 befor
 \triangleright Requires experimental results and validated models (FPO-2) **D and DT - II**
level leading to Q = 10 before
I models (FPO-2) **Strategy to interleave DD and DT**
Use DD and DT H-modes to identify I_p level leadin
attempting Q = 10 in DT
Requires experimental results and validated models (FF Strategy to interleave DD and DT - II
 \ge Use DD and DT H-modes to identify I_p level leading to Q = 10 before
 \ge Requires experimental results and validated models (FPO-2)
 \ge Requires experimental results and va
-

1 (의결 china eu india japan korea russia usa

T removal strategy

T removal strategy

> Combination of RISP operation and ICWC expected to remove efficiently T

for thin boronized deposited layers (~µm) at divertor and wall (~ 10's nm)

CRIS hard on [3] Matureau ISEN! **for thin boronized deposited layers (~µm) at divertor and wall (~ 10's nm)**
For thin boronized deposited layers (~µm) at divertor and wall (~ 10's nm)

- \triangleright RISP to be performed before thick B layers build-up at divertor
- **EXECUTE CONSIDER THE CONSIDER THE CONSIDER THE CONSIDER TRISP

FRISH STREET RISP

THE CONSIDER TRISP

THE CONSIDER TRISP OF CONSIDER AND TRI** \triangleright ICWC cycle (20-30 mins) effectively depletes T re-implanted in near surface layers before/after RISP
	- \rightarrow ~ 15% of time allocated every two weeks of DT operation

Basis for \sim 50 s H-mode burn duration in Q = 10 scenario

FPO-2 Outcome for FPO-3 (back-up)

FPO – 1 H+T phase

Objective 1: Retire risk of RE formation during mitigation due to RE seeds

ITER SPI simulations with DREAM (1D) predict avalanche gain

 \triangleright 7.5 MA T-plasmas should not lead to large I_{RE} (< 100 kA) (mitigation without T already established in L-mode up to 15 MA in SRO and FPO-1)

3rd IAEA Technical Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024 **TCT** china eu india japan korea russia us

Optimization of disruption mitigation strategy with W wall

Neutron fluence consumption

-
- **DT-1 fluence = 3.5 10²⁵ DT neutrons

> DT-1 fluence = 3.5 10²⁵ DT neutrons

> Fluence Q = 10 P_{fusion} = 500 MW 300s burn <u>pulse</u> ~ 6 10²²

<u>pulses</u> (3.5 10²⁵ DT neutrons = 660 x 300 s at P_{fusion} = 500 MW) Figure 11 PF 11 Alternation State 10 Pfusion = 500 MW 300s burn pulse ~ 6 10²² neutrons > 580

Person = 10 P_{fusion} = 500 MW 300s burn pulse ~ 6 10²² neutrons > 580

<u>pulses</u> (3.5 10²⁵ DT neutrons = 660 x 300 s at DT-1 fluence = 3.5 10²⁵ DT neutrons

Fluence Q = 10 P_{fusion} = 500 MW 300s burn <u>pulse</u> ~ 6 10²² neutrons** \rightarrow **580

<u>pulses</u> (3.5 10²⁵ DT neutrons = 660 x 300 s at P_{fusion} = 500 MW)

Essential to perform program ESSENT MANUTE ASSET OF A SET OF A SET OF A SET OF A SET OF AN ONE OF A SET OF AND SOLUTION OF A SET OF**
-

DT-2 DEMO scenario studies - I
tudies (core+divertor exhaust) with high P_{aux}

-
- DT-2 DEMO scenario studies I

→ Heat exhaust studies (core+divertor exhaust) with high P_{aux}

→ Core radiated powers of ~ 50% cand be demonstrated with Q ≥ 5 and same

divertor power flow as Q = 10 → DEMO core + diver DT-2 DEMO scenario studies - I

≻ Heat exhaust studies (core+divertor exhaust) with high P_{aux}

≻ Core radiated powers of ~ 50% cand be demonstrated with Q ≥ 5 and same

divertor power flow as Q = 10 → DEMO core + diver

DT-2 DEMO scenario studies - II
dies to determine optimum H&CD for DEMO (e.g. to DT-2 DEMO scenario studies - II
 \ge H & CD studies to determine optimum H&CD for DEMO (e.g. to

confirm ECH as sufficient) with Q ~ 10 DT-2 DEMO scenario studies - II
 \overline{a} CD studies to determine optimum H&CD for DEMO (e.g.

confirm ECH as sufficient) with Q ~ 10

- D T-2 DEMO scenario studies III

> DEMO-relevant plasma operation \rightarrow auxiliary systems constrained to

limitations coming from DEMO scope and operational capabilities **DT-2 DEMO scenario studies - III**
DEMO-relevant plasma operation \rightarrow auxiliary systems constrained to
limitations coming from DEMO scope and operational capabilities
- Heating and Current Drive schemes $DT-2$ $DEMO$ scenario studies - III
DEMO-relevant plasma operation \rightarrow auxiliary systems continitations coming from DEMO scope and operational capa
- Heating and Current Drive schemes
- Diagnostics
- Control algorithms DT-2 DEMO scenario s

DEMO-relevant plasma operation \rightarrow auxilies

imitations coming from DEMO scope and

• Heating and Current Drive schemes

• Diagnostics

• Control algorithms

• Fuelling (e.g. T plant operating in di **EMO-relevant plasma operation** \rightarrow **auxiliary systems constrained to
imitations coming from DEMO scope and operational capabilities

• Heating and Current Drive schemes

• Diagnostics

• Control algorithms

• Fuelling (e.** DT-2 DEMO scenario studies - III
The DIST - III
The plasma operation → auxiliary systems constrained to
Aning from DEMO scope and operational canabilities
	-
	- **Diagnostics**
	-
	- **operating in direct recycling mode)**
operating in direct recycling mode)
^{of} IAEA Technical Meeting on Plasma Disruptions and their Mitigation 3- Sept-2024 45/23
	- \blacksquare Etc.

