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“BASELINE” Disruption/Runaway Mitigation System (DMS) for ITER
* Massive Gas Injection (MGI) // Shattered Pellet Injection (SPI)

1. Trigger:

* MHD modes
 Limits -> & Dynamic Neural Networks
« Arcs

2. “BASIC” mitigation concepts:

» Forced plasma rotation to prevent MHD wall locking;

Localized heating/current drive to shrink the islands;

» Plasma re-heating, gas and position control for safe shutdown;

» Stohastization of the magnetic field for runaway electron losses;

» Electromagnetically launched liquid “flyer plates” or “rail sabot gun”
« Self-sacrificing elements

« Biasing - forced arcs initiation

3. “SPARE” concept:

« EXplosive INjection (EXIN) by Chemical blasting




Energy quench could be associated with interaction of the low m/n modes
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3 Trigger conditions based on MHD modes - not clear for at least 100 ys before disruption




Arc discharges are observed during disruptions (DITE, JFT-2, ...) O
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Arc bursts observed during rotation of the 2/1 mode and thermal quench in T-10 '3
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Arc’s intensity increases in series
of thermal quenches
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Arc Currents could be an additional trigger for the disruption mitigation systems




3. T-10 biasing experiments - forced arcs initiation
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Disruption induced by biasing between

the W electrode and rail limiter
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Experimental test of runaway electron suppression by means of dense gas jet

injection in the ’fast’stage of current quench

EM valve V1 V2
Distance to 80 8
plasma,cm

P, Atm 20 5(70)
Gas He He
Flux, p/sec 1023 | 5x10%3
Pulse, ms 2-3 2-3
Time delay* | ~1.6ms | ~6ms

(*) Time delay between the valve power
supply control pulse and the start of gas jet

injection
*The gas
valve head
inside
tokamak
vacuum
vessel

*Triggered by negative voltage spike

Plasmacurrent
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*The helium gas jet injection with (1,5 + 2)x1022
particle/sec converts the ‘slow’ current quench
phase into the ‘fast’ one;

«Secondary Hard X-ray burst are suppressed by
the helium gas jet injection with =103
particle/sec

» MHD activity initiation - not clear

M.M. Dremin, Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 4 (2012) 54
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“Spare” concept: Chemical blasting
Ultra fast plasma discharge shutdown

- Detonation of a small chemical charge

- Local gas pressure increases faster than the gas
can expand

- Shock wave propagation inside the plasma

- MHD burst

- Thermal quench

- Discharge termination

® vaomEN

Technology & Safety ??? S Putvineki 2011 ;/y{
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PBX - Polymeric Binder Explosives

The explosive used in eight charges placed on
the moon during Apollo 17 was discovered and s
developed at he Naval Ordnance Laboratory at \-(:_

The substance used was hexanitrostilbene (HNS).

yellow crystals
empirical formula: C14HzNgO12
molecular weight: 450.1
energy of formation: +57.3 kcallkg = +239.8 kJ/kg
enthalpy of formation: +41.5 kcal/lkg = +173.8 kd/kg
oxygen balance: —67.6 %
nitrogen content: 18.67 %
volume of explosion gases: 766 I/kg
heat of explosion
(H20 lig.): 977 kcal/kg = 4088 kJ/kg
(H20 gas): 958 kcal/kg = 4008 kJ/kg
density: 1.74 g/cm?®
melting point: 318 °C = 604 °F (decomposition)
lead block test: 301 cm*/10 g
impact sensitivity: 0.5 kpm=5Nm
friction sensitivity:
over 24 kp = 240 N pistil load crackling

n on a spacecraft, and deployed

o Explo

—

sive..




vacuum stability

thermal stability

friction sensitivity

Impact (shock)
sensitivity

shelf life

radiation sensitivity

12

The material does not decompose in a vacuum, prolonged exposure
resulting in a weight loss of less than 0.06 percent, and this due
primarily to evaporation of residual solvents

It does not begin to melt until exposed to temperatures well above 500°F
for prolonged periods, making it extremely safe to handle in any normal
temperature environment.

It is in no way sensitive to friction,

As araw material it is very insensitive to impact shock. It has been
dropped from great heights onto solid concrete without detonating; its
Impact sensitivity as measured in Military Standard Laboratory tests is
well above the minimum military standard of 60 centimeters.

With respect to shelf life, military tests predict a decomposition of only
1 percent over a 500-year period at 212°F

Radiation sensitivity tests indicate that material is in no way sensitive to
radiation.

Increased radiation resistance to fast neutron flows E°>°1°MeV,
F°~°7.5°e12°neutron/cm2/sec




NEROIET GENERAL GORPORATION ]

4. Thermal Decomposition/Nuclear Radiation Damage
HNS was subjected?® to neutron and gamma radiation from a power reactor at flux
levels of about 3.85 x 10% per hour and 7.5 X 10 neutrons/cm?/sec. fast neutron
flux, unchanged compound remaining after irradiation was determined by thin layer
chromatography. Similar samples heated at 280°C were analysed for residual
compound (Table 3). Ratios of unchanged samples to solid products proved nearly
the same for irradiated and heated samples at each of three levels of degradation for

corresponding equivalent weight losses.
13




Explosive Gas Blast: The Expansion of Detonation Products in Vacuum
JOURNAL OF APPLIED PHYSICS VOLUME 42, NUMBER 2 FEBRUARY 1971
TroMaAs J. Anrens CuarLEs F. ALLEN Ropert L. Kovacw
0.2- to 3-gm HNS |
103 to 107 Torr
8-12 km/sec

agrees well with calcula-

tions performed using either a Landau-Stanyukovich—

Zeldovich-Kompaneets? (LSZK) or a Wilkins equation

of state for TNT and similar boundary conditions.
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Diagnostics: f’

Rogowski, Si diode, MotionPro Camera, Magnetic probes ' rossTon
detector

Two bridge-wire Electric initiation schemes tested
- 180 VAC transformer

- 30 kV capacitor bank
180 VDC

Spark ignition wires:
low-alloyed copper bronze ;4 v

+ Ag covering + Teflon isolation
16
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KV |nject|on system - Laboratory test
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- Fast gas injection

- Gas flow in the forward direction / vacuum

KV-209 (20 mg) for T-10 5m3 vV

\ Carbon monoxide CO 17mg 4.5e19 m™
17 (+1% atoms impurities)

110.01

110.02 110.03

time, msec

1.6 Pa/m3

P.Savrukhin 28th IAEA FEC 2020 ID: 696
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KV injection system in T-10
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Density limit disruption in the T-10 tokamak
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Discharge shut-down by Primers Injection in T-10
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Radiation Light Images during Discharge shut-down in T-10 'f’
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Discharge shut-down by Primers Injection in T-10 f’
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Discharge shut-down by Primers Injection in T-10 4
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Conclusions:

* Analysis of the T-10 experiments with W (and Li) in-vessel limiters can confirm
appearance of the arc discharges during disruption instability.

» Monitoring of the arc discharges at the plasma periphery could provide
important trigger for the disruption mitigation systems in tokamaks.

Several “Spare” concepts of the Disruption Mitigation System are analyzed T-10,
including:
- Biasing for forced arcs initiation
- Explosive Gas Injection with Chemical Blasting - fast gas and
microparticles injection

Preliminary experiments demonstrated possibility of the fast plasma shutdown
based on Explosive Gas Injection with Chemical Blasting:

- Fast trigger and disruption initiation

- Fast thermal quench

- Fast plasma current decay

- Generation of the runaway electrons

O
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