- **Plasma disruption:** the sudden deterioration of plasma confinement and the discharge interruption caused by all kinds of MHD instabilities
	- during the discharge process of tokamak
- **Deleterious effects from plasma disruption**
- ➢ convection heat loads to the PFCs
- ➢ poloidal halo currents generating mechanical stress
- ➢ runaway electrons

- \triangleright killer pellet injection (KPI)
- ➢ massive gas injection (MGI)
- ➢ Shattered pellet injection (SPI)

Mitigation methods

Progress of mitigating plasma disruption by the shattered pellet injection in EAST

- ➢ Eddy current drive with good electromagnetic compatibility
- ➢ Gas material: Ne, Ar, He, etc.
- \triangleright Response time: 0.15 ms
- \triangleright Impurity quantity: < 30 Pa·m³/s (1-4 ms)

- \triangleright In-situ formation with the temperature of 8 K
- ➢ Pellet material: Ne
- \triangleright Pellet size: D*L=5×7-15 mm (actual injected particles 9 - 14 Pa·m³)
- ➢ Pellet velocity: 100-400 m/s
-

Acknowledgements

This research is funded by National Key Research and Development Program of China (2022YFE03130000, 2022YFE031000003, 2022YFE03040003), National Nature Science Foundation of China (12105322, 11905135) and Interdisciplinary and Collaborative Teams of CAS.

- ➢ Two MGIs and one SPI
- \triangleright Two CCDs: 10 kHz, 50 kHz
- ➢ AXUV: 64 channels, 100 kHz
- ➢ ECE: 32 channels, 1 MHz
- \triangleright Divertor probes and Mirnov probes : 50 kHz

1. Introduction

Fig.1 Thermal loads on PFCs and the wall melting resulting from

runaway electrons striking during plasma disruption

2. Disruption mitigation system in EAST

2.1 MGIs and SPIs in EAST

MGIs Parameters

SPI Parameters

- ➢ Small fragments are confined at plasma edge and larger ones pass through the LCFS into deeper plasma during fragments penetration process using SPI
- \triangleright Compared with MGI, shorter t_{pre-TQ}, stronger core radiation and more uniform poloidal radiation distribution, and better mitigation of T_e and q_t on divertor using SPI.
- \triangleright Compared with ISPI, shorter t_{pre-TQ}, longer t_{TQ}, t_{CQ}, smaller halo current using SPI; higher velocity and more injected particles for SPI and ISPI, shorter t_{pre-TO} , t_{TQ} and t_{CQ}

Fig.2.3 (a) Pellet velocities at different quantities of propellant gas (b) Actual injected amount of different Ne pellets with different Ne material consumption (c) Partial pressures of Ne and He in vacuum vessel

2.2 Experimental setup

Essential diagnostic

Shatter tube of SPI

 \triangleright Position: ~20° tube (R, Z) = (2.5 m, 0.4 m), straight tube (R, Z) = (2.5 m, 0.4 m)

 \triangleright Similar disruption characteristics, shorter cooling time, stronger core radiation and more uniform

- poloidal radiation distribution
- $>$ ~50% reduction for the peak T_e and ~40% reduction of q_t on the divertor

diagnostics, MGIs and SPI

Jingsheng Yuan1* , L. Li1,2, S.B. Zhao1,2, Y.M. Duan¹ , Guizhong Zuo¹ , and Jiansheng Hu 1 1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China ²University of Science and Technology of China, Hefei 230026, China **Email: jingsheng.yuan@ipp.ac.cn*

Fig.2.6 Images of the shatter tube (2022) and straight tube (2023) of SPI in vacuum vessel

- ➢ Easier to generate halo current using ISPI
- \triangleright PSPI with shorter t_{pre-TQ} (1.5-7 ms), longer t_{TQ} (0.05-0.15 ms) and t_{CQ} (4-5.5 ms)

3. Experimental results

3.1 First rapid shutdown using Ne SPI in EAST

 Characteristics of rapid shutdown ➢ Ne SPI~13.2 Pa·m³ , 340 m/s

 \triangleright T_{pre-TO}~4.5 ms, t_{TO}~0.1 ms, t_{CO}~10.8 ms \triangleright Penetration: edge radiation core radiation strong MHD^{-0.95} TQ: radiation burst¹T_e collapselupward current spike CQ : rapid current decay

3.2 Comparison of disruption characteristics between SPI and MGI

-
- *Fig.2.4 (a) Toroidal and (b) Poloidal views of essential*
- **4. Summary & Outlook**

Fig.3.2 Radiation contour map for #166188 and penetration process of pellet fragments

3.3 Insufficiency shattered pellet injection (ISPI)

- **Characteristics of rapid shutdown**
- \triangleright Ne ISPI~13.2 Pa·m³, 160 m/s
- \triangleright Similar disruption characteristics, t_{pre-TQ}~4.8 ms, t_{TQ}~0.059 ms, t_{CQ}~8.7 ms
- ➢ Faster velocity leading to pellet fragmentation due to a slight curved tube

Fig.3.4 Comparison of plasma paraments triggered disruptions using SPI and MGI

Fig.3.5 Radiation contour maps during TQ with MGI (a) and SPI (b)

Summary

Outlook

- \triangleright Upgrades of the SPI system will be implemented to achieve the formation of mixed pellets using D_2/Ne or H_2/Ne
- \triangleright Disruption mitigation experiments with various SPI compositions

Pellet Penetration process

- ➢ Small fragments: ablation, ionization, helical-structure movement and confined to the plasma edge
- ➢ Larger fragments: pass through the LCFS into deeper plasma accompanied by ablation and poloidal transport along the closed magnetic surface

Comparison of disruption characteristics between SPI and PSPI

➢ Appear 'Tail', and also generate halo current, but smaller halo current for SPI

Fig.3.6 (a) (b) Time evolution of plasma current, Hard X-ray, radiation contour maps and halo current during disruption mitigation using ISPI and SPI (c) number statistics of w/o halo current and 'tail'

