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JET Dataset - UNICA

(*)

ne-HRTS

Prad-HBOL

set Campaigns Disruptions Regular

I 2011÷2013 C28-C30 127 115

II 2016 C36 29 41

III 2019÷2020 C38 37 63

Plasma parameters Acronym Dimensionality Diagnostics

Electron Temperature profile 𝑇𝑒 1-D HRTS

Electron Density profile 𝑛𝑒 1-D HRTS

Radiated Power profile 𝑃𝑟𝑎𝑑 1-D Bolometer (H, V)

Total Radiated Power 𝑃𝑟𝑎𝑑−𝑇𝑂𝑇 0-D Bolometer

Total Input Power 𝑃𝑇𝑂𝑇 0-D BetaLi

Internal Inductance 𝑙𝑖 0-D BetaLi

Normalized locked mode LMnorm 0-D LMS

MHD spectrogram Spectr 1-D Mirnov coils 
[1] E. Aymerich et al, Nuclear Fusion 2021, 61(3), 036013

Te, ne and Prad peaking factors (0D):

• encode spatial information

• defined heuristically

• lose information as they spatially average profile values 

Te, ne  and Prad profile images (1D):

• no heuristic definition 

• reports the entire profile values

Flat-top

Ip

time
Stable
phase

precursor 
phase [1]
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CNN predictor architeture [2]

[2] E. Aymerich et al., Nucl. Fusion, vol. 62, p. 066005, 2022.

CNN outcome

Te, ne and Prad profiles have been treated as a single image. li, Pfrac and LMnorm are fed in downstream of the first 
filter block.

#94218

disruptive likelihood

The CNN is feed with a 
200 ms sliding window 

Te
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e
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d
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CNN disruptive pattern [2] 

✓ strong radiation from the 
central chords of BOL-H 
(Figure d)

✓ electron temperature collapse 
at plasma core (LOS <23, 
Figure e) 

✓ core electron density peaking 
(LOS <22, Figure f). 

❑ Impurity accumulation 
disruptive mechanism: 

Paths responsible for the alarms can be easily identified 
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CNN disruptive pattern [2] 

✓ rise of the plasma internal 
inductance (Figure b). 

✓ radiation at the central chords 
of BOL-H (Figure d)

✓ cooling of the plasma between 
LOS 12 and 30 of HRTS (R 
between 3.13m to 3.46m, 
Figure e) 

The further analysis of the BOL-V data allows to localize the radiation blob in the outboard of the 
plasma (chords 1-5, Figure c).

Paths responsible for the alarms can be easily identified 

❑ Edge collapse disruptive 
mechanism: 
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MLP and GTM predictor architetures [3]

tpre-disr talarm

ThresholdPeaking factor of temperature Tepf

Peaking factor of electron density nepf

Peaking factor_1 of the radiation(*) RADpf-CVA

Peaking factor_2 of the radiation(**) RADpf-XDIV

Internal Inductance li

Normalized locked mode LMnorm

Peaking factor of temperature Tepf

Peaking factor of electron density nepf

Peaking factor_1 of the radiation(*) RADpf-CVA

Peaking factor_2 of the radiation(**) RADpf-XDIV

Internal Inductance li

Normalized locked mode 
thresholding 
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#94218

#94218

OR

[4] A Pau et Al., Nucl. Fusion 2019, 59, 106017

Multiple condition alarm scheme of the GTM predictor proposed [4]

The peaking factors are defined as a 'core versus all' metric [4]
(*) excluding the X-point/divertor region from all
(**) excluding the core region from all



Predictor performance comparison [3] 

• Successful prediction (SP), Missed Alarms (MAs), False alarms (FAs) 

• Cumulative fraction of predicted disruptions:
reports the value, in per unit, of successful alarms activated 
before the corresponding 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑡𝐷 − 𝑡𝑎𝑙𝑎𝑟𝑚)

Ip

Flattop Phase

Time [s]

Stable phase Precursors phase

tDtpre-disr tvalvetalarm

Premature detections Successful prediction
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set Campaigns Disruptions Regular

Training C28-C30 85 70

Test C36,C38 108 149

Performance index MLP GTM CNN

SP-test[%] 95.37 97.22 94.44

MA-test [%] 2.78 1.85 2.78

FA-test [%] 3.36 18.79 5.37

Feature extraction Manual Manual Automatic

Interpretability Black box Interpretable Black box



CNN predictor upgrade adding vertical bolometer data [5]

Performance index CNN-UP1

MA-test [%] 1.87

FA-test [%] 0.67

Feature extraction Automatic

Interpretability Black box

Warning time [s] G. Sias | IAEA-Third Technical meeting on Plasma Disruptions and their Mitigation| 03/09/24 | Page 9

The separation of the two different mechanisms makes the predictor 
alarm more interpretable: 
❑ top CNN branch provides larger warning times
❑ bottom CNN branch detects the mode-locking phase.

set Campaigns Disruptions Regular

Training C28-C30 85 70

Test C36,C38 108 149

[5] E. Aymerich et al., Fusion Engineering and Design 193 (2023) 113668.

The predictor allows to greatly reduce the number of FAs



SOM predictor: an unsupervised approach [6]

samples from disrupted and regular pulses
samples from disrupted pulses

Performance index SOM

MA-test [%] 4.63

FA-test [%] 2.01

Feature extraction Manual

Interpretability Yes

[6] E. Aymerich et al., A self-organised partition of the high 
dimensional plasma parameter space for disruption prediction, 
accepted for publication on Nucl. Fusion.

set Campaigns Disruptions Regular

Training C28-C30 85 70

Test C36,C38 108 149

The SOM resulting from the unsupervised training is coloured providing it only with the information related to the 
discharge ending state: regular or disrupted. No information about the precursors phase has been exploited.

Peaking factor of temperature Tepf

Peaking factor of electron density nepf

Peaking factor_1 of the radiation(*) RADpf-CVA

Peaking factor_2 of the radiation(**) RADpf-XDIV

Internal Inductance Li

Normalized locked mode LMnorm
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Safe region

disrupted region

The evolution of the pulse can be tracked in real time while the monitoring the velues 
of the original variable on the SOM component plains
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SOM predictor: an unsupervised approach [6]
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SOM predictor: an unsupervised approach [6]

The black dots track the position of the experiment on the map:
o beginning of the discharge flat-top
o ending of discharge flat-top 

Regular pulse:
Flat and regular signal behaviors
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SOM predictor: an unsupervised approach [6]

The black dots track the position of the experiment on the map:
o beginning of the discharge flat-top
o ending of discharge flat-top 

ending sample 

Transition from safe to the disruptive 
region: 
✓ Increase of core radiation (increase 

of the Radpf-CVA and decrease of the 
Radpf-XDIV , Figure 4b)

✓ Subsequent decrease of core 
temperature 

Last disrupted phase
✓ Rise of the locked mode (MLnorm)



Predictor performance comparison
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Predictor FA-test [%]

MLP 3.36

GTM 18.79

CNN 5.37

SOM 2.01



Conclusions and future works

❖ Ongoing work
✓ Developing  profile standardization algorithms for predictor portability  
✓ extracting rules from the SOM for a clear interpretation of the model's decisions 

during the discharge evolution.

❖ CNN predictor achieves good performance and doesn't need any preprocessing of plasma 
profiles (ne, Te and Prad)
✓ Good a posteriori interpretability of the predictor answer for extrapolation of safe 

and disruptive path behaviors
✓ Easy portability of the predictor to different machines after rescaling the plasma 

profile with respect the machine dimensions.  

❖ SOM predictor achieved good performance with unsupervised training  
✓ No precursor phase is defined to interpret the predictor outcomes
✓ Real-time tracking of the discharge on the map
✓ Straight relation between the operative point evolution and features of the map 

regions for disruption monitoring. 
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Thank you



Input Layer 
Hidden Layer
Output Layer

൞

ന𝑊1 ∙ ҧ𝐼 + ത𝑏1 = ҧ𝑔
തℎ = 𝑓 ҧ𝑔  

ന𝑊2 ∙ തℎ + ത𝑏2 = ത𝑂

MLP models complex relationships between the 
input variable space ҧ𝐼 and the output variable 
space ത𝑂

convolutional unit CUk

o Ck convolutional layer 
o Nk batch-normalization layer 
o Ak nonlinear activation layer, with ReLU functions

CNN consists of a cascade of blocks which performs a filtering of 
an input image to extract significant features 

Neural networs

Pmax or Pavg are the max and average pooling layersP

D dropout layer FC Fully connected layer

S SoftMax function
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Self Organizing Map

A SOM projects a set of N d-dimensional input data x=[x1, x2, ..., xd] into a 2D discrete 

map topologically ordered

Each input x is associated to a cluster of the map
characterized by a weight vector w (barycenter of the inputs
mapped in the node)

xr=[xr1, xr2, ..., xrd]

r = 1,…, N samples

Cluster i - weight vector

wi=[wi1, wi2, ..., wid]

xr2

xr1

xrd

How the SOM works

❑ Competition

find the winning neuron, i.e., the  closest to each input 
vector

❑ Cooperation

find the winning neuron’s neighbors

❑ Adaptation

update the weights of winning neuron and its neighbors

wj(n+1) = wj(n) + ahij [d(x, wj(n)]

 learning rate 

d distance function 

h is the neighborhood function, it defines the winner 
neighborood 
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# 96893 is a regular pulse detected as disruptive by the CNN reference predictor [2], CNN-UP1 does not trigger an 
alarm, because the radiation pattern at chords #13-16 of BOL-H does not correspond to a radiation pattern of BOL-V.

CNN predictor upgrade adding vertical bolometer data [5]
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CNN predictor upgrade with MHD spectrogram [7] 

Performancei Index CNN-UP2

MA-test [%] 1.09

FA-test [%] 1.09

Feature extraction Automatic

Interpretability black box

CNN, responsible for processing the plasma profiles and Mirnov coils 
data, can yield longer warning times than the LM thresholding 

Normalized locked mode 
thresholding 
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Remarkable reduction of FAs

set Campaigns Disruptions Regular

Training C28-C30 75 65

Test C36,C38 92 131

[7] E. Aymerich et al., Fusion Engineering and Design 204 (2024) 114472.



CNN predictor upgrade with MHD spectrogram [7] 
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FA pattern in CNN reference predictor [2]:
✓ high radiation from central chords of BOL-H (figure 3d)
✓ decrease core electron temperature figure (figure 3e)
✓ peaking of the electron density at the core (figure 3f). 

By adding the MHD spectrogram as input the CNN-UP2 output provides a limited rise of the disruptive 
likelihood both in time and value(figure 4a) with respect to the CNN reference predictor (figure 3a) .

CNN reference predictor [2] CNN-UP2 [6] 

Figure 3
Figure 4



Profile standardization

Definition of resampling grids to standardize the profile images among JET and AUG machines

AUG - VTA

AUG - ECE

𝑟𝑖 =
𝑋𝑖 − 𝑅

𝑎

LoS normalized positions 
[a.u.]

𝑟𝐽𝐸𝑇 =
𝑋 − 𝑅

𝑎
 

𝑟𝐴𝑈𝐺 =
𝑍

𝑎
 

LoS normalized positions 
[a.u.]

G. Sias | IAEA-Third Technical meeting on Plasma Disruptions and their Mitigation| 03/09/24 | Page 22



Profile standardization

JET  KB5-H geometry AUG  FHC geometry

𝑧𝑖 =
𝑍𝑖

𝑍𝑚𝑎𝑥 − 𝑍m𝑖𝑛

LoS normalized positions [a.u.]
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