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JET Dataset - UNICA (®
Py
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Electron Temperature profile T, 1 HRTS < rlatiop >
Electron Density profile n, 1-D HRTS mgQ %
Radiated Power profile Praa 1-D Bolometer (H, V) « ‘%l
otal Radiated Power Prad—tor 0-D Bolometer >
otal Input Power Pror 0-D Betali T b lpre e time
Internal Inductance l; 0-D Betali phase phase [1]
Normalized locked mode LM orm 0-D LMS [1] E. Aymerich et al, Nuclear Fusion 2021, 61(3), 036013

IMHD spectrogram Spectr 1-D Mirnov coils

Te, ne and Prad peaking factors (0D):
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* lose information as they spatially average profile values
I 2016 C36 29 41

i 2019+2020 C38 37 63

Te, ne and Prad profile images (1D):

* no heuristic definition

* reports the entire profile values
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CNN predictor architeture [2] (®)
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CNN disruptive pattern [2] (®)

Paths responsible for the alarms can be easily identified
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CNN disruptive pattern [2] (@)

Paths responsible for the alarms can be easily identified

===CNN alarm
a) |l <108
s [ 6 %EI Edge collapse disruptive
; Z : mechanism:
il ° £ v rise of the plasma internal
s E inductance (Figure b).
w0 & ¥ radiation at the central chords
20 £ of BOL-H (Figure d)
; v" cooling of the plasma between
- ;1019”2 LOS 12 and 30 of HRTS (R
: e 2 between 3.13m to 3.46m,
iti ) s Figure e)

Time [s] Time [s]

The further analysis of the BOL-V data allows to localize the radiation blob in the outboard of the

plasma (chords 1-5, Figure c).
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MLP and GTM predictor architetures [3] ©

Peaking factor of temperature Te

Peaking factor of electron density |ne;

Peaking factor_1 of the radiation!”) RAD ; ¢,

Peaking factor_2 of the radiation!™) RAD ¢

Internal Inductance li

Normalized locked mode LM, orm

Peaking factor of temperature Te
Peaking factor of electron density ne
Peaking factor_1 of the radiation!”)  |RAD ; -y,
Peaking factor_2 of the radiation(™ |RAD ;py
Internal Inductance li

The peaking factors are defined as a 'core versus all' metric [4]

(*) excluding the X-point/divertor region from all
(**) excluding the core region from all

#94218
N Threshold | _______. i

Hidden Layers

Output

Multiple condition alarm scheme of the GTM predictor proposed [4]

#94218

85 9 95 10
time [s]

Normalized locked mode
thresholding

[4] A Pau et Al., Nucl. Fusion 2019, 59, 106017
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* Successful prediction (SP), Missed Alarms (MAs), False alarms (FAs)

Predictor performance comparison

o Lo i

Training C28-C30

Test C36,C38 108 149

* Cumulative fraction of predicted disruptions:
reports the value, in per unit, of successful alarms activated
before the corresponding warning time (tD — talarm)

A

Stable phase Precursors phase

Flattop Phase N

Disruption

~
3
Pad
g
~+

wlo Time([s]

/f S\

3] \\\ ))}
Performance index| MLP GTM CNN
SP-test[%] 95.37 97.22 94.44
MA-test [%] 2.78 1.85 2.78
FA-test [%] 3.36 18.79 5.37
Feature extraction | Manual Manual Automatic
Interpretability [Black box|Interpretable| Black box

o o o
N ® ©

o
o

e o o o ¢
= N W s

Accumulated fraction of detected disruptions
o
(4]

o

107 102

107

CNN
—MLP
—GTM

- = DMV minimum time

Warning time [s)]

G. Sias | IAEA-Third Technical meeting on Plasma Disruptions and their Mitigation| 03/09/24 | Page 8




CNN predlctor upgrade adding vertical bolometer data [5] ©)

|= [5] E. Aymerich et al., Fusion Engineering and Design 193 (2023) 113668.

95998
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N, T
The separation of the two different mechanisms makes the predictor m

alarm more interpretable: Training C28-C30
O top CNN branch provides larger warning times
O bottom CNN branch detects the mode-locking phase. Test C36,C38 108 143

-

The predictor allows to greatly reduce the number of FAs
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SOM predictor: an unsupervised approach [6] ©

The SOM resulting from the unsupervised training is coloured providing it only with the information related to the
discharge ending state: regular or disrupted. No information about the precursors phase has been exploited.

i o Lo

Training C28-C30

I samples from disrupted and regular pulses
B samples from disrupted pulses

Test C36,C38 108 149
Performance index] SOM
MA-test [%] 4.63
o o)
Peaking factor of temperature Te ¢ FA-test [%] . 2.01
Peaking factor of electron density e Feature extraction | Manual
Interpretability Yes

Peaking factor_1 of the radiation!)  |RAD ¢ I:>
Peaking factor_2 of the radiation(™ |RAD ;py

Internal Inductance Li
Normalized locked mode LM

[6] E. Aymerich et al., A self-organised partition of the high
dimensional plasma parameter space for disruption prediction,
accepted for publication on Nucl. Fusion.

norm
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SOM predictor: an unsupervised approach [6] Q)

The evolution of the pulse can be tracked in real time while the monitoring the velues
of the original variable on the SOM component plains

Tepf RADpf—CVA

G 2:23

Lo 1.99
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1.57 1.49

1.39 1.24

1.21 0.99
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4 * 13.75e-4
e 3.22e-4
2.69e-4
137 2.16e-4
1.62e-4
I safe region 109 1.10e-4
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SOM predictor: an unsupervised approach [6] ©

The black dots track the position of the experiment on the map:
e beginning of the discharge flat-top
® ending of discharge flat-top  *.

#90259

pf_CVA S som outpu

Rad

Regular pulse:
Flat and regular signal behaviors

Time
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SOM predictor: an unsupervised approach [6] Q)

The black dots track the position of the experiment on the map:
@ beginning of the discharge flat-top

® ending of discharge flat-top
O ending sample

D #96729 | - 9

£ ! Transition from safe to the disruptive

0.5 1 .
3 . - region:
v’ Increase of core radiation (increase

b)

5 2 of the Rad ., and decrease of the
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Last disrupted phase
v" Rise of the locked mode (ML,,,,,)
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Predictor performance comparison

—

= ; g —_— g g e e ' j 1 1T
- R g W "-'-.\ = lore-Disr AUT
0.9+ : - ~CNN
—GTM
i —MLP
0.8 ML
norm

= = DMV minimum time
—SOM

e
~
[

o
o

o o o
now s
T \ |

Accumulated fraction of detected disruptions
o o
- 18
| |

\ : L | L L L | 1 - ey =1
102 107 10° 10’
Warning time [s]

o

—
S,
w

f
(8]

Predictor FA-test [%]
MLP 3.36
GTM 18.79
CNN 5.37
SOM 2.01
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Conclusions and future works

** CNN predictor achieves good performance and doesn't need any preprocessing of plasma
profiles (ne, Te and Prad)
v' Good a posteriori interpretability of the predictor answer for extrapolation of safe
and disruptive path behaviors
v’ Easy portability of the predictor to different machines after rescaling the plasma
profile with respect the machine dimensions.

s SOM predictor achieved good performance with unsupervised training
v No precursor phase is defined to interpret the predictor outcomes
v’ Real-time tracking of the discharge on the map
v’ Straight relation between the operative point evolution and features of the map
regions for disruption monitoring.

X/

** Ongoing work

v' Developing profile standardization algorithms for predictor portability

v extracting rules from the SOM for a clear interpretation of the model's decisions
during the discharge evolution.
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Neural networs

MLP models complex relationships between the

input variable space I and the
space O
Hidden Layer

Input Layer
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CNN consists of a cascade of blocks which performs a filtering of
an input image to extract significant features

3o -3 -8

convolutional unit CU, ‘ CUx = m

o C,convolutional layer
o N, batch-normalization layer
o Agnonlinear activation layer, with ReLU functions

n Pimax OF P, are the max and average pooling layers

B dropout layer D Fully connected layer

SoftMax function
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Self Organizing Map

A SOM projects a set of N d-dimensional input data x=[Xy, X, ..., X4] Into a 2D discrete
map topologically ordered

How the SOM works
Each input x is associated to a cluster of the map
characterized by a weight vector w (barycenter of the inputs

U Competition
mapped in the node)

vector
2D output

K neurons lattice

find the winning neuron, i.e., the closest to each input

U Cooperation

find the winning neuron’s neighbors
U Adaptation

Input layer

update the weights of winning neuron and its neighbors
w;(n+1) = w;(n) + ah; [d(x, w;(n)]

Xrd

o learning rate
® / d distance function
N Cluster I - weight vector h is the neighborhood function, it defines the winner
Xe=[Xrg, Xy ooy Xl w=[w;,, W, Wi/ neighborood
_ [ i1s Y20 e YYid
r=1,..., N samples
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CNN predictor upgrade adding vertical bolometer data [5] ©)

# 96893 is a regular pulse detected as disruptive by the CNN reference predictor [2], CNN-UP1 does not trigger an
alarm, because the radiation pattern at chords #13-16 of BOL-H does not correspond to a radiation pattern of BOL-V.
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CNN predictor upgrade with MHD spectrogram [7] C o)

Stacked

frozen

Plasma profiles .

[7] E. Aymerich et al., Fusion Engineering and Design 204 (2024) 114472.
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CNN, responsible for processing the plasma profiles and Mirnov coils
data, can yield longer warning times than the LM thresholding
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CNN predictor upgrade with MHD spectrogram [7] C o)

FA pattern in CNN reference predictor [2]:

v" high radiation from central chords of BOL-H (figure 3d)
v" decrease core electron temperature figure (figure 3e)
v' peaking of the electron density at the core (figure 3f).

By adding the MHD spectrogram as input the CNN-UP2 output provides a limited rise of the disruptive
likelihood both in time and value(figure 4a) with respect to the CNN reference predictor (figure 3a).

CNN reference predictor [2] CNN-UP2 [6]
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Profile standardization

—
(7

Definition of resampling grids to standardize the profile images among JET and AUG machines
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Profile standardization @)

JET KB5-H geometry AUG FHC geometry
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