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Aim of the work
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Development of a not a simple disruption predictor, but a system for anomaly detection and classification. 

Multiclass

Detection and Classification of Plasma Anomalies, 
providing useful information for the control system and 
DMS

Ensemble of predictors

Instead of one deep model, simpler detector/classifier 
have been developed for specific anomalies. This 
improves the explainability of the model, reduce the 
data requirements for training, and the transferability 
to other tokamaks. 

Physics-informed machine/deep learning

Physics-informed deep learning allows to constrain 
model with both data and physics, allowing for more 
reliable predictors with the capability to extrapolate 
using physical models, improving also transferability.

Adaptive learning

Adaptive learning allows to update the training set 
pulse by pulse, avoiding performance degradation 
(obsolescence)

Main Features
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Typical Paths to Disruptions
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Core Radiation

Edge radiation

Electron temperature 
hollowness

Electron temperature 
Edge cooling

MHD mode 
destabilisation

Disruption

Pucella G. et al. “Onset of tearing modes in plasma termination 

on JET: the role of temperature hollowing and edge cooling”, 

Nuclear Fusion, 2021

Rossi R. et al. “A systematic investigation of radiation collapse 

for disruption avoidance and prevention on JET tokamak”, 

Matter and Radiation at Extremes, 2023
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Database
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C38 C39 C40 C41 Total

Total 907 168 310 298 1683

Safe 653 133 184 171 1141

Disruptive 254 35 126 127 542

Ramp Up Disruptions 0 0 0 0 0

Flat Top Disruptions 62 23 33 33 151
Ramp Down 

Disruptions
192 12 93 94

391

The database consists of 1683 JET pulses, spanning from the 
high-power DD campaign to the full tritium and DT campaign 
(C38, C39, C40, C41). The DB includes 1141 not disruptive pulses 
and 542 disruptive. 
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System Architecture
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MHD anomaly detector

Electron temperature 
anomaly detector and 
classifier

Alarm classification 
system

Control System

Disruption 
Mitigation System

Tokamak 
(plasma)

Diagnostics

Bolometer cameras

Detectors and Classifiers
Ensemble

Mode Locked Amplitude
Internal Inductance
Plasma Current

Thomson Scattering 
(HRTS)

Radiative anomaly 
detector and classifier

• Only real-time compatible signals have been used
• All algorithms have computational times compatible with real-time
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Magnetic anomalies
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Before disruptions, in most discharges, a big 
MHD mode (usually a 2,1) increases in 
amplitude and decreases in frequency still it 
“locks” to the wall. 

By specific magnetic coils it is possible to 
monitor both the frequency and the 
magnitude of the modes. 

Combining the mode lock amplitude with 
other plasma quantities (such as the internal 
inductance) it is possible to improve 
prediction accuracy. 
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Peluso E., Rossi R., et al. “Alternative Detection of n = 1 Modes Slowing Down 

on ASDEX Upgrade”, Applied Sciences 10 (21), 2020



Physics-Informed Neural Networks (PINNs)
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In supervised learning, 𝜽  are tuned with 
“example”, i.e. data already labelled (in our case, 
for binary prediction, disruptive and safe 
previous pulses). 
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In Physics-Informed Learning, 𝜽 can be tuned minimising a 
loss function that takes into account both typical 
supervised loss and a physics-based loss function. 

A machine/deep learning algorithm can be described as a function 𝒇(𝜽, 𝑿) where X are the features (inputs) and 𝜽 are 
the parameters to be tuned. 
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Rossi R. et al. “On the potential of physics-informed neural networks to solve 

inverse problems in tokamaks”, Nuclear Fusion, 2023



PINN classification of Mode Locking
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Rossi R., et al. “A hybrid physics/data-driven logic to detect, classify, and predict 

anomalies and disruptions in tokamak plasmas” Nuclear Fusion, 2024

At the beginning, no data is present. The 
predictor is trained with physics.

Pulse-by-pulse, data populates the training 
set and the PINN is updated. However, physics 
is still used for regions in presence of data 
scarcity and for extrapolation (allowing also 
for physics-informed transfer learning).
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Electron Temperature Hollowness

16

The electron temperature profile is expected to have 
the maximum value on the magnetic axis (plasma 
core). 

Electron temperature hollowness may occur, leading 
to destabilisation of magnetic configuration (MHD 
modes triggering).

Detection and classification of electron temperature 
hollowness has been based on a simple statistical 
indicator that is stable, universal, accurate and 
specific. 

No training is needed.

𝐺 𝑟 𝑏𝑖𝑚𝑜𝑑𝑎𝑙 = 𝐴𝑒
−
𝑟−𝜇 2

2𝜎2 1 + 𝑒
−
2𝜇𝑟
𝜎2

𝐺𝐹𝐻 =
𝜇

𝜎
= 2𝐷𝐵
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Rossi R. et al. “Development of robust indicators for the identification 

of electron temperature profile anomalies on JET”, PPCF 2022

Warning time [s] Sensitivity 1-Specifity Accuracy
1.09 97.09% 0.00% 99.56%



Electron Temperature Edge Cooling
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Enough hot plasma is expected inside the separatrix. 

If edge electron temperature is too low (Edge Cooling), 
resistivity dominates and MHD modes may be 
triggered.

Detection and classification of electron temperature 
edge cooling has been based on another statistical 
indicator that is stable, universal, accurate and specific.  

No training is needed.

It aims at measuring the magnetic radius at which 98% 
of temperature is contained. 

98%

𝜌98

a-a

𝑇𝑒

𝐶𝐷𝐹𝑇 𝑟 =
𝑎−׬
𝜌98 𝑇𝑒𝑑𝑟

𝑎−׬
𝑎
𝑇𝑒𝑑𝑟

= 0.98

𝐶𝐵𝐶 = Τ1 𝜌98
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Rossi R. et al. “Development of robust indicators for the identification 

of electron temperature profile anomalies on JET”, PPCF 2022

Warning time [s] Sensitivity 1-Specifity Accuracy
0.320 99.90% 0.00% 99.98%
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Radiative Anomalies
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Radiation is a loss of energy.

Too high local radiation leads to local cooling:

1. Core Radiation: Electron Temperauture Hollowness

2. MARFE Radiation: Edge Cooling

3. Low Field Side Radiation: Edge Cooling

4. Anomalous Divertor Radiation: Edge Cooling

Measuring local radiation is fundamental.

In tokamaks, we have bolometers (or diodes), which
measure the line-integrated emissivity.

We need fast inversion techniques. A simple low spatial
fast inversion inversion has been developed to evaluate
the radiation in specific regions of the tokamak.
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20

A simple low-spatial resolution fast-time inversion
has been developed to monitor the emitted
power in specific region of the plasma.

Computational time is acceptable for real-time
applications (10 to 100 μs).

Anomaly indicators have been calculated as the
inverse of local radiative cooling times:

1

𝜏𝑟𝑎𝑑,𝑖
= 𝛬𝑖 =

𝑃𝑟𝑎𝑑.𝑖
𝑊𝑝
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Rossi R. et al. “A systematic investigation of radiation collapse for disruption avoidance and 

prevention on JET tokamak”, Matter and Radiation at Extremes, 2023

Radiative Anomalies Detection and Classification
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Alarm and mitigation/prevention/avoidance control logic
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Murari A., Rossi R., et al. “A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors”, Nature Communications, 2024

Given the paths to disruptions and the typical 
time scales of the various phenomena, one can 
propose a control and mitigation schemes which: 

1. Radiation anomalies trigger control schemes 
to counteract local cooling (both edge and 
core)

2. Hollowness trigger control schemes to 
sustain core heating

3. Edge Cooling trigger early termination of the 
plasma (Prevention)

4. MHD anomaly trigger mitigation actions
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Results – Statistical analysis
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Hypotising a minimum time for successful avoidance 
(200 ms), prevention (100 ms) and mitigation (10 
ms), expected statistics on the database has been 
evaluated. 

These results have been obtained starting with no 
data in the training set (only physics guided at the 
beginning) and the predictors have been retrained 
with new data pulse-by-pulse (adaptive learning). 

Wrong early terminations at high plasma current (> 
2 MA) are very low (2%). 

Some safe pulses have alarms in radiation patterns 
and electron temperature profile, but these are not 
false alarms (anomaly present but not disruptive). 
Important to be detected for control and not 
mitigation! 
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Murari A., Rossi R., et al. “A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors”, Nature Communications, 2024

Total Mitigation Prevention Avoidance
Disruptive JET DMV 36 3 5 28
Disruptive JET JTT 19 1 0 18
Disruptive JET no 
actions 20 5 4 11

Safe JET JTT 33 7 0 10
Safe JET no actions 178 0 0 0



Results – Warning times statistics
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Warning times are extremely improved using
eletron temperature and radiation anomaly
indicators, going from a median value of 200 ms for
a MHD-based detector to 900 ms combining MHD,
electron temperature and radiation anomalies.

High warning times from radiation and electron
temperature are important since they allows for
control schemes to recover from the instability and
avoid disruptions.
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Murari A., Rossi R., et al. “A control oriented strategy of disruption prediction to 

avoid the configuration collapse of tokamak reactors”, Nature Communications, 2024

Disruptive 
Time vs DMV

Mitigation Prevention Avoidance

Mean [ms] 481 135 1115
Median [ms] 165 118 689

Min [ms] 25 80 135



Results – Example 1 – Pulse 96486 
(core-hollowness-mode locking- disruption)
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Murari A., Rossi R., et al. “A control oriented strategy of disruption prediction to 

avoid the configuration collapse of tokamak reactors”, Nature Communications, 2024



Results – Example 2 – Pulse 96491
(core-hollowness-recovering)
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Murari A., Rossi R., et al. “A control oriented strategy of disruption prediction to 

avoid the configuration collapse of tokamak reactors”, Nature Communications, 2024
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Conclusions

29

A new disruption predictor has been developed combining physics and data driven
indicators and machine learning.

The predictor is able to detect and classify MHD, electron temperature and
radiative anomalies, allowing the control system to take the proper
countermeasures.

Several “Simulations” of prediction in four JET campaigns have been performed, 
starting from no previous training set (simulating the beginning of the operation 
of a new tokamak, like ITER)

Performances are very high in terms of accuracy, sensitivity, specificity, and 
warning times, suggesting that this hybrid methodology implemented with 
adaptive learning is a good candidate for ITER and other new reactors.  

Future Developments

• Implementation of new anomalies (e.g. density limits)
• Implementation of the predictor to other tokamaks to gather experience for ITER. 
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Adaptive Training Logic

31

A realistic adaptive training logic has been implemented, starting from zero training pulses (everything based
on physics and statistical indicators).

MHD training

Physics + Data.

Data labelled following these rules:

No Alarm No disruptions: 
Stable time slices

Disurption occurred: 
last 100 ms are anomalous time slices 

Radiation anomalies training

Physics + Data.

Data labelled following these rules:

No Alarm No disruptions: 
Stable time slices

Disurption occurred or MHD/Eletron
Temperature detected: 
last 2000 ms are anomalous time slices 

Temperature anomalies training

No Training is Needed
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Results – Sensitivity analysis
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Control strategies are under development and
improvements. Of course, the quality of the
predictor is a function of time required by the
control system to perform mitigation, prevention,
and avoidance.

We performed a sensitivity analysis of our
algorithm varying avoidance and prevention
times.
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Rossi R., et al. “A hybrid physics/data-driven logic to detect, classify, and 

predict anomalies and disruptions in tokamak plasmas” Nuclear Fusion, 

2024



Results – Time To Anomaly Prediction
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A time to anomaly predictor has been developed based on
neural networks.

Prediction of MHD anomalies is good, since their a usually
preceed by other anomalies.

Probably, it may have sense to predict an anomaly proximity
indicator and not a time-to-anomaly, being it depedent also
to the control system.
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Rossi R., et al. “A hybrid physics/data-driven logic to detect, classify, and 

predict anomalies and disruptions in tokamak plasmas” Nuclear Fusion, 

2024



Results – Comparison with JET Control System
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Total Mitigation Prevention Avoidance
Disruptive JET DMV 36 3 5 28
Disruptive JET JTT 19 1 0 18
Disruptive JET no actions 20 5 4 11

Safe JET JTT 33 7 0 10
Safe JET no actions 178 0 0 0

Disruptive Time vs DMV Mitigation Prevention Avoidance
Mean [ms] 481 135 1115
Median [ms] 165 118 689
Min [ms] 25 80 135

We compare our results with JET disruption detection and control system.

Results validate the goodness of the predictor
(larger warning times and predictions in line with JET control system)
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Murari A., Rossi R., et al. “A control oriented strategy of disruption prediction to 

avoid the configuration collapse of tokamak reactors”, Nature Communications, 2024



Results – Example 2 – Pulse 94650
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Murari A., Rossi R., et al. “A control oriented strategy of disruption prediction to 

avoid the configuration collapse of tokamak reactors”, Nature Communications, 2024
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