Assimilation of deuterium into relativistic runaway electron beams and the implications for benign terminations in present devices, ITER, and future devices

by E.M. Hollmann¹, with L. Baylor², A. Boboc³, P. Carvalho³, N.W. Eidietis⁴, A. Fil³, J.L. Herfindal², S. Jachmich⁵, A. Lvovskiy⁴, C. Paz-Soldan⁶, C. Reux⁷, D. Shiraki², R. Sweeney⁸, A.Yu. Pigarov⁹, and JET Contributors

¹UCSD, ²ORNL, ³UKAEA, ⁴GA, ⁵ITER, ⁶Columbia, ⁷CEA, ⁸CFS, ⁹Comp-X

Presented at the 3rd IAEA Technical Meeting on Disruptions Sept 5, 2024

Outline

- Motivation why are we interested in deuterium assimilation into runaway electron (RE) plateaus?
- Overview quick overview of present data on RE plateaus
- 1D diffusion model trying to model deuterium assimilation in present devices
- Predictions for ITER
- Predictions for some other future devices (SPARC and STEP)
- Future work

Motivation (1/2): Low-Z RE plateaus formed by massive D_2 injection tend to have low conversion of magnetic to kinetic energy

- Massive D₂ injection "purges" high-Z impurities out of RE plateau.
- Resulting low-Z RE plateau has very fast, high-growth rate final loss MHD instability.
- Often, all REs lost to wall in single large instability.
- RE current all converted to thermal plasma (Ohmic) current.

- Very little conversion of magnetic to kinetic energy.

• For high-Z final loss, many small instabilities cause longer loss process.

- Significant conversion of magnetic energy into kinetic energy.

Motivation (2/2): Low-Z RE plateaus formed by massive D_2 injection appear to have large wetted area when hitting wall

- Low Z RE plateau has very fast, high-growth rate final loss MHD instability.
- RE wetted area very large, giving low heat fluence.
- Observed in many machines (JET, DIII-D, TCV, ASDEX).

Even helium gas does not give single loss event - something special about D₂?

- Large helium injection does not usually give single loss event.
- Usually only observed after massive H₂ or D₂ injection.

Special effect of D_2 thought to be linked to volume recombination

- He MGI causes rise in thermal electron density and slight drop in HXR level.
 - Partial expulsion of high-Z (Ar) impurities out of core
- D₂ MGI causes large drop in thermal electron density and large drop in HXR level.
 - Large expulsion of high-Z impurities out of core

Neutrals play major role in cooling RE plateaus at low Z (applies to both He and D_2)

- At high Z, input power mostly balanced by line radiation.
- At low Z, neutral cooling begins to dominate.
 - Cannot model low-Z RE plateaus without considering neutrals!

DIII-D RE plateau power balance

For D₂ purged RE plateaus, line radiation is dominantly from D₂ lines – large molecule density!

- Line radiation power is dominated by D₂ lines (Werner and Lyman bands).
- D present also but Ly-α strongly trapped (~20x).
- Molecules are present at significant levels in RE plateau and need to be included for accurate modeling.

DIII-D D₂ purged RE plateau radiated power

RE plateau cross-field ion transport of order few m^2/s

v_{rot} (10⁵cm/s)

2

C

0

-6₀

<u>₹</u>-2

. •

-0.8

- Ion diffusion coefficients are larger than classical in both • perp and para directions for high Z plateaus. $D_{i,perp} \sim 2 - 5$ m^2/s .
- Toroidal ion rotation very slow $\sim 2 5$ Hz, poloidal rotation faster ~ 0.5 kHz.
- Measured for high Z only! Need to assume similar for low Z.

DIII-D high-Z RE plateaus

Eric Hollmann/IAEA/ Thurs Sept 5, 9:00, 2024. 30 min + 10 min questions

0.2

0.4

0.6

Potential

Rotation velocity

Current profile appears to be centrally peaked

- Polarization angle of Ar-II line emission used to constrain current profile for low Z (He purged) RE plateaus.
- Consistent with slightly peaked current profile models (red curves).
- Has only been measured for medium Z (He-purged) RE plateau, not D₂ purged.

DIII-D low Z (He purge) RE plateaus

H_2 appears to behave fairly similar to D_2 on DIII-D

1D impurity diffusion model

- Approximate actual 3D geometry with 1D cylindrical geometry.
 - REs confined to some radius r_a, neutrals up to some radius r_w.
 - Estimate r_{α} from magnetic reconstructions.
 - Typically chose r_w to be halfway between r_a and r_{vv} (vacuum vessel radius)
- Ions diffuse radially at some prescribed diffusion coefficient $D_i \sim 2 m^2/s$.
- RE diffusion coefficient typically chosen small $D_{RE} \sim 0.2 \text{ m}^2/\text{s}$.
- Neutrals diffuse radially with classical neutral diffusion with some enhancement factor D0 to account for convection cells.
 - Simulations suggest D0 ~ 3 [Frolov,2005] at low pressure. Matching data suggests D0 should be somewhat larger, D0 ~ 5 9.
- RE energy distribution modeled with test particle model.
- Loop voltage not modeled by full Ampere/Faraday + control system.

- Input desired I_p and model tries to adjust loop voltage to match with limited \overline{N} slew rate (typically ~0.2 V/ms).

• D molecules D_2 included as well as molecular ions included up to D_3^+ .

1D model able to capture measured $T_e \sim 0.4 \text{ eV}$ in low Z D₂ purged RE plateau

- Cold plasma in low Z RE plateau appears to be in thermal equilibrium with $T_e \sim T_i \sim T_{vib} \sim T_{rot} \sim T_{kin} \sim 0.4 \text{ eV}$.
 - In agreement with 1D diffusion model.
- Electron density not always good match.
 - Can be varied by changing r_w .
- Dominant neutral species is D₂.
 - Comparable to cold electron density ne
- High Z impurity (Ar) mostly in neutral form and mostly outside plasma.

DIII-D low Z (D₂ purged) RE plateaus

Power and particle balance change character dramatically when moving from high Z to low Z

• 1D model of D₂ purge in ITER shown here.

- Dominant processes predicted are similar in DIII-D or JET, but timescales different.

• Dominant power loss initially line radiation from thermal electron impact.

- Shifts to neutral cooling after D₂ injection.

• Dominant free electron balance is RE impact ionization balanced with radial transport initially.

- Shifts to RE impact ionization balanced by molecular recombination after D_2 injection.

Tuning neutral convection correction D0 in DIII-D – matching measured n_e decay rate gives factor D0 ~ 5

- Decay rate of thermal electron density provides strong constraint on D0.
- In DIII-D, D0 ~ 5 gives reasonable match to measured ne decay rate.
 - Use D0 = 5 as default value for this free parameter.

Tuning effective wall radius r_w : matching D_2 radiated power suggests using r_w halfway between r_p and r_{vv}

- r_w is free parameter which sets volume neutrals can occupy.
- In DIII-D, matching D₂ radiated power in purged RE plateaus gives r_w ~ 0.8 m.
 - This is halfway between r_a and r_{VV} .
 - Use halfway point as default.

DIII-D low Z (D_2 purged)

Tuning D0 in JET – to match measured ne decay rate need to turn up neutral diffusion by factor D0 ~ 9.

- Default D0 = 5 appears to be too low to match observed n_e decay rate in JET.
 - D0 ~ 9 works better.
- Poor agreement with measured loop voltage in JET.
 - Usually within 2x in DIII-D.
 - Can be off by 5x in JET.
 - Still not resolved, maybe needs higher RE radial diffusion?
- Also, poor agreement with measured radiated power.
 - This has been resolved instrumental artefact; effect of neutrals on JET bolometers (N. Schoonheere work).

JET low Z (D₂ purged) RE plateaus

Matching high loop measured loop voltage in JET challenging for 1D model, even when decreasing r_w

- Big difference with DIII-D cases no position control.
 - DIII-D RE plateaus held steady on center with dI/dt = 0 until ready to study final loss.
 - JET RE plateaus scraping off against CP and have dl/dt < 0.
- For high-Z JET RE plateau, did scan of r_w.
- r_p = 0.6 m here and r_{vv} = 1.9 m, so nominal starting point is 1.2 m.
- Even going down to r_p = 0.9 m not giving central loop voltage of 28 V.
- Need to turn up RE radial transport?

JET current decay during RE plateau scrape-off suggests radial transport could be large in JET?

- Matching high Vloop and large current decay in JET high-Z RE plateau challenging.
- By turning up D_{RE} to high values > 10 m²/s, get get higher V_{loop}.
- Also, starting to get decaying I_p, just as observed in the experiment.
- Suggests that higher D_{RE} (not default low D_{RE} = 0.2 m²/s) is more correct JET ?

JET high-Z RE plateau (simulated)

Partial recombination effect captured reasonably well by 1D model

- From now on, just keep "default" 1D model free parameters to keep things simple:
 - $-r_{w} = (r_{p} + r_{VV})/2$
 - $D_{RE} = 0.2 \text{ m}^2/\text{s}$
 - $D_0 = 5$
- Can match equilibrium thermal n_e within 2x or so.
- Different blue curves are 1D model using different RE kinetic model approximations
 - Indicate uncertainty ~2x based on RE energy distribution.
- Define "recombined" as $n_e < 10^{18}/m^3$.
 - close to JET noise floor.
- Model not capturing observed "un-recombination" ("density limit") which happens at very high D₂ number.
 - Possibly due to D₀ dropping at higher D₂ density?

Observed recombination trend with I_p captured – harder to recombine as I_p is turned up

- Partial recombination is balance between RE + neutral ionization vs molecular ion recombination.
- Turning up Ip = turning up RE ionization source term, causing increase in n_e.
- This trend is seen experimentally, and trend is also captured in 1D model.

High Z impurity content not critical (as long as small compared with D_2 number)

- In experiments, injected D₂ number is typically much larger than Ar number.
- JET experiments changed Ar number in vacuum vessel.
 - See little effect on equilibrium n_e.
 - Lack of trend roughly captured by 1D model.

ITER simulations: should be able to reach recombined state in ITER

- For ITER, expect some neon already in plasma for TQ and CQ mitigation ("1st injection").
- Then fire in H_2 as "2nd injection".
- 1D model predicts Ne plasma harder to recombine than Ar plasma.
 - Due to lower molecular recombination via NeD⁺ vs ArD⁺.
- 1D model predicts that H₂ better at causing recombination than D₂.
 - Recycles off wall faster gives better neutral cooling.
- Higher RE currents harder to recombine, as expected.

Recombination timescales in ITER are expected to be fast enough to beat VDE time

- VDE timescale in ITER expected to be of order 100 ms.
- Want recombination timescale faster than this.
- Once recombination occurs, expect VDE to slow significantly, because dI/dt will slow.
- Time to recombination tends to be well under 100 ms for ITER and decreases as more H₂ is added.

Other future devices – SPARC and STEP

- RE plateau recombination was investigated for two other future devices:
 - SPARC (medium-size tokamak, large aspect ratio, high current, D₂ into Ne)
 - STEP (large-size tokamak, low aspect ratio, high current, D₂ into Ar)
- Neither achieve recombination within desired range of injected D₂ number.
- Recombination hard to achieve with high current density.
- Hard to achieve recombination with D₂ into Ne (least desirable combination), easiest with H₂ into Ar.

Summary

- D₂ injection into RE plateaus is promising because it appears to reduce RE-wall heat fluence = "benign termination".
 - Tied to volume recombination -> low impurity level -> big MHD
- 1D diffusion model has been developed for purpose of understanding RE plateau volume recombination.
 - Includes main essential ingredients: neutral cooling and molecular recombination.
- Present simulations indicate that yes volume recombination should be achievable in ITER.
- Simulations suggest achieving volume recombination in higher current density devices (SPARC and STEP) will be more challenging.
- This work is just first step, many areas for improvement
 - Need improvements to existing model IonBalance (better neutral transport, better RE transport) to try to capture "density limit" for ITER.
 - Parallel lines of development:

CQL3D: Fokker-Planck model, being adapted for this problem (A. Pigarov) DREAM: Fokker-Planck model, hope to adapt for this problem (N. Schoonheere) SOLPS: ionization/recombination balance model (M. Hoppe)