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Outline

• Motivation – why are we interested in deuterium assimilation into runaway 
electron (RE) plateaus?

• Overview – quick overview of present data on RE plateaus
• 1D diffusion model – trying to model deuterium assimilation in present devices
• Predictions for ITER
• Predictions for some other future devices (SPARC and STEP)
• Future work
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Motivation (1/2): Low-Z RE plateaus formed by massive D2 injection tend to have 
low conversion of magnetic to kinetic energy
• Massive D2 injection ”purges” high-Z impurities out 

of RE plateau.
• Resulting low-Z RE plateau has very fast, high-growth 

rate final loss MHD instability.
• Often, all REs lost to wall in single large instability. 
• RE current all converted to thermal plasma (Ohmic) 

current.
 - Very little conversion of magnetic to kinetic 

energy.
• For high-Z final loss, many small instabilities cause 

longer loss process.
 - Significant conversion of magnetic energy into 

kinetic energy.



4 Eric Hollmann/IAEA/ Thurs Sept 5, 9:00, 2024. 30 min + 10 min questions

From [Reux, 2021]

JET

Motivation (2/2): Low-Z RE plateaus formed by massive D2 injection appear to 
have large wetted area when hitting wall

Low Z

High Z

• Low Z RE plateau has very fast, high-growth rate final 
loss MHD instability.

• RE wetted area very large, giving low heat fluence. 
• Observed in many machines (JET, DIII-D, TCV, 

ASDEX).
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Even helium gas does not give single loss event - something special 
about D2?

• Large helium injection does not usually 
give single loss event.

• Usually only observed after massive H2 
or D2 injection.
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Special effect of D2 thought to be linked to volume recombination

• He MGI causes rise in thermal electron density and 
slight drop in HXR level.

 - Partial expulsion of high-Z (Ar) impurities out of core
 
• D2 MGI causes large drop in thermal electron density 

and large drop in HXR level.
 - Large expulsion of high-Z impurities out of core
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Neutrals play major role in cooling RE plateaus at low Z (applies to 
both He and D2)

• At high Z, input power mostly balanced by 
line radiation.

• At low Z, neutral cooling begins to 
dominate.

 - Cannot model low-Z RE plateaus 
without considering neutrals!

DIII-D RE plateau power balance
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For D2 purged RE plateaus, line radiation is dominantly from 
D2 lines – large molecule density! 

• Line radiation power is dominated by D2 
lines (Werner and Lyman bands).

• D present also but Ly-a strongly trapped 
(~20x).

• Molecules are present at significant levels 
in RE plateau and need to be included for 
accurate modeling.

DIII-D D2 purged RE plateau 
radiated power
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DIII-D high-Z RE plateaus

DIII-D high-Z RE plateaus

RE plateau cross-field ion transport of order few m2/s

• Ion diffusion coefficients are larger than classical in both 
perp and para directions for high Z plateaus. Di,perp ~ 2 – 5 
m2/s.

• Toroidal ion rotation very slow ~ 2 – 5 Hz, poloidal rotation 
faster ~ 0.5 kHz.

• Measured for high Z only! Need to assume similar for low Z.
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Current profile appears to be centrally peaked

• Polarization angle of Ar-II line emission used to 
constrain current profile for low Z (He purged) RE 
plateaus.

• Consistent with slightly peaked current profile models 
(red curves).

• Has only been measured for medium Z (He-purged) 
RE plateau, not D2 purged.

DIII-D low Z (He purge) 
RE plateaus
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H2 appears to behave fairly similar to D2  on DIII-D

• Do not have extensive data on H2 vs 
D2 yet on DIII-D or JET.

 - Most existing data from TCV (see 
U. Sheikh presentation this 
conference)

• Available data does not show 
significant differences.

 - Equilibrium ne similar
 - Recombination timescale similar.

DIII-D D2 or H2 purged RE plateau 
equilibrium thermal electron density
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1D impurity diffusion model

• Approximate actual 3D geometry with 1D cylindrical geometry.
 - REs confined to some radius ra, neutrals up to some radius rw.
 - Estimate ra from magnetic reconstructions.
 - Typically chose rw to be halfway between ra and rvv (vacuum vessel radius)
• Ions diffuse radially at some prescribed diffusion coefficient Di ~ 2 m2/s.
• RE diffusion coefficient typically chosen small DRE ~ 0.2 m2/s.
• Neutrals diffuse radially with classical neutral diffusion with some enhancement 

factor D0 to account for convection cells.
 - Simulations suggest D0 ~ 3 [Frolov,2005] at low pressure. Matching data 

suggests D0 should be somewhat larger, D0 ~ 5 – 9.
• RE energy distribution modeled with test particle model.
• Loop voltage not modeled by full Ampere/Faraday + control system.
 - Input desired Ip and model tries to adjust loop voltage to match with limited 

slew rate (typically ~0.2 V/ms).
• D molecules D2 included as well as molecular ions included up to D3

+.
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1D model able to capture measured Te ~ 0.4 eV in low Z D2 
purged RE plateau 

• Cold plasma in low Z RE plateau appears to be 
in thermal equilibrium with Te ~ Ti ~ Tvib ~ Trot ~ Tkin 
~ 0.4 eV.

 - In agreement with 1D diffusion model.
• Electron density not always good match.
 - Can be varied by changing rw .
• Dominant neutral species is D2.
 - Comparable to cold electron density ne 
• High Z impurity (Ar) mostly in neutral form and 

mostly outside plasma.

DIII-D low Z (D2 purged) 
RE plateaus
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Power and particle balance change character 
dramatically when moving from high Z to low Z

• 1D model of D2 purge in ITER shown here.
 - Dominant processes predicted are similar in DIII-
 D or JET, but timescales different.
• Dominant power loss initially line radiation from 

thermal electron impact.
 - Shifts to neutral cooling after D2 injection.
• Dominant free electron balance is RE impact 

ionization balanced with radial transport initially.
 - Shifts to RE impact ionization balanced by 

molecular recombination after D2 injection. 
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Tuning neutral convection correction D0 in DIII-D – matching 
measured ne decay rate gives factor D0 ~ 5

• Decay rate of thermal electron density 
provides strong constraint on D0.

• In DIII-D, D0 ~ 5 gives reasonable match to 
measured ne decay rate.

 - Use D0 = 5 as default value for this free 
parameter.

DIII-D low Z (D2 purged) 
RE plateau
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Tuning effective wall radius rw: matching D2 radiated power 
suggests using rw halfway between rp and rvv

• rw is free parameter which sets volume 
neutrals can occupy.

• In DIII-D, matching D2 radiated power in 
purged RE plateaus gives rw ~ 0.8 m.

 - This is halfway between ra and rVV.
 - Use halfway point as default.

DIII-D low Z (D2 purged) 
RE plateaus
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Tuning D0 in JET – to match measured ne decay rate need to 
turn up neutral diffusion by factor D0 ~ 9.

• Default D0 = 5 appears to be too low to 
match observed ne decay rate in JET. 

 - D0 ~ 9 works better.
• Poor agreement with measured loop 

voltage in JET.
 - Usually within 2x in DIII-D.
 - Can be off by 5x in JET.
 - Still not resolved, maybe needs higher 

RE radial diffusion?
• Also, poor agreement with measured 

radiated power.
 - This has been resolved – instrumental 

artefact; effect of neutrals on JET 
bolometers (N. Schoonheere work).

JET low Z (D2 purged) RE 
plateaus
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Matching high loop measured loop voltage in JET 
challenging for 1D model, even when decreasing rw

• Big difference with DIII-D cases – no 
position control.

 - DIII-D RE plateaus held steady on 
center with dI/dt = 0 until ready to 
study final loss.

 - JET RE plateaus scraping off against 
CP and have dI/dt < 0.

• For high-Z JET RE plateau, did scan of rw.
• rp = 0.6 m here and rvv = 1.9 m, so 

nominal starting point is 1.2 m. 
• Even going down to rp = 0.9 m not 

giving central loop voltage of 28 V.
• Need to turn up RE radial transport? 

JET high-Z RE plateau #95128

(courtesy of M. Beidler)

JET high-Z RE plateau (simulated)
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JET current decay during RE plateau scrape-off suggests 
radial transport could be large in JET? 

• Matching high Vloop and large current 
decay in JET high-Z RE plateau 
challenging.

• By turning up DRE to high values > 10 
m2/s, get get higher Vloop.

• Also, starting to get decaying Ip, just as 
observed in the experiment.

• Suggests that higher DRE (not default low 
DRE = 0.2 m2/s) is more correct JET ?

JET high-Z RE plateau (simulated)
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Partial recombination effect captured reasonably well by 1D 
model 

Low Z 

Low Z 

• From now on, just keep “default” 1D model free 
parameters to keep things simple:

 - rw = (rp + rVV)/2
 - DRE = 0.2 m2/s
 - D0 = 5
• Can match equilibrium thermal ne within 2x or so.
• Different blue curves are 1D model using different RE 

kinetic model approximations
 - Indicate uncertainty ~2x based on RE energy 

distribution.
• Define “recombined” as ne < 1018/m3.
 - close to JET noise floor.
• Model not capturing observed “un-recombination” 

(“density limit”) which happens at very high D2 number.
 - Possibly due to D0 dropping at higher D2 density?
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Observed recombination trend with Ip captured – harder to 
recombine as Ip is turned up

Low Z • Partial recombination is balance 
between RE + neutral ionization vs 
molecular ion recombination.

• Turning up Ip = turning up RE ionization 
source term, causing increase in ne.

• This trend is seen experimentally, and 
trend is also captured in 1D model.
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High Z impurity content not critical (as long as small 
compared with D2 number)

Low Z • In experiments, injected D2 number is 
typically much larger than Ar number.

• JET experiments changed Ar number 
in vacuum vessel.

 - See little effect on equilibrium ne.
 - Lack of trend roughly captured by 

1D model.
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ITER simulations: should be able to reach recombined state in ITER

• For ITER, expect some neon already in 
plasma for TQ and CQ mitigation (“1st 
injection”). 

• Then fire in H2 as “2nd injection”.
• 1D model predicts Ne plasma harder to 

recombine than Ar plasma.
 - Due to lower molecular 

recombination via NeD+ vs ArD+.
• 1D model predicts that H2 better at 

causing recombination than D2.
 - Recycles off wall faster – gives better 

neutral cooling.
• Higher RE currents harder to recombine, 

as expected.
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Recombination timescales in ITER are expected to be fast 
enough to beat VDE time 

• VDE timescale in ITER expected to be of 
order 100 ms.

• Want recombination timescale faster 
than this.

• Once recombination occurs, expect 
VDE to slow significantly, because dI/dt 
will slow. 

• Time to recombination tends to be well 
under 100 ms for ITER and decreases as 
more H2 is added.
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Other future devices – SPARC and STEP

• RE plateau recombination was investigated for two 
other future devices:

 - SPARC (medium-size tokamak, large aspect 
ratio, high current, D2 into Ne)

 - STEP (large-size tokamak, low aspect ratio, high 
current, D2 into Ar)

• Neither achieve recombination within desired 
range of injected D2 number.

• Recombination hard to achieve with high current 
density.

• Hard to achieve recombination with D2 into Ne 
(least desirable combination), easiest with H2 into 
Ar.
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Summary

• D2 injection into RE plateaus is promising because it appears to reduce RE-wall heat fluence 
= “benign termination”.

 – Tied to volume recombination -> low impurity level -> big MHD
• 1D diffusion model has been developed for purpose of understanding RE plateau volume 

recombination.
 - Includes main essential ingredients: neutral cooling and molecular recombination.
• Present simulations indicate that yes volume recombination should be achievable in ITER.
• Simulations suggest achieving volume recombination in higher current density devices 

(SPARC and STEP) will be more challenging.
• This work is just first step, many areas for improvement
 - Need improvements to existing model IonBalance (better neutral transport, better RE 

transport) to try to capture ”density limit” for ITER.
 - Parallel lines of development: 
  CQL3D: Fokker-Planck model, being adapted for this problem (A. Pigarov)
  DREAM: Fokker-Planck model, hope to adapt for this problem (N. Schoonheere)
  SOLPS: ionization/recombination balance model (M. Hoppe)


