

Development and preliminary calibration of an off-normal warning system for SPARC

A.R. Saperstein, R. Sweeney, D. Boyer, A. Kumar, Z. Keith, H. Wietfeldt, A. Maris, A. Wang, M. Pharr, C. Rea

3rd Technical Meeting on Plasma Disruptions and their Mitigation – 4 September 2024 Creation of a cross-institutional team for the development of SPARC's Off-Normal Warning System

Overview

- Scope of SPARC's Off-Normal Warning (ONW) system
- Progress on its development
 - ONW system structure
 - Creation of *Off-Normal Event* (ONE)-specific warnings

Scope of SPARC's *Off-Normal Warning* (ONW) system

The ONW system will play two crucial roles in SPARC operations

• Plasma control

- Integration into the Plasma Control System
- Identify when a disruption may be imminent and decide on a response based on the risk to the device

Scenario design

- Integration into Pulse-Planning workflow
- Identify the cause(s) of plasma disruptions and identify scenarios that may be less disruptive for future campaigns

SPARC's ONW systems need to address several ITER-relevant challenges specific to high-power devices

- SPARC has a "Disruption Budget"
 - The number of disruptions (cumulative thermal loads) the tokamak is designed to withstand
- The budget needs to be managed early in operation
 - This requires the ONW system to be ready provided a limited amount of data
 - This will be a stress test of *cross-machine transferability* for both physics and data-driven models
 - This is an opportunity to test the implementation of *adaptive training*
 - Which has been explored on JET [1,2], EAST [3], ASDEX [4]
- There will be little (if any) room to commission the warning system at high performance
 - The risk associated with an un-mitigated disruption may be too great
- The ONW system needs to be tunable assuming limited performance info
 - The performance of the system can be unclear when running in mostly closed-loop
 - However, this is also an opportunity to explore the cost-benefit analysis of running in open-loop

[1] Murari, A. *et al* Nat Commun 15, 2424 (2024)

[2] R. Rossi et al 2024 Nucl.Fusion 64 046017

[3] arXiv:2404.08241v2

[4] B. Cannas *et al* 2010 Nucl.Fusion 50 075004

4 September 2024

• Operator friendly

- When a warning fails, it needs to be clear why, as well as how to update it
- The triggering of a warning should make it clear why a plasma disrupted, and suggest how to adjust the scenario for the next pulse
- Starting development with *physics-driven* warning models
 - Provides the *clear tuning knobs* and *interpretability* for the low-data budget available early on
- Followed by *data-driven* warning models
 - This is expected to provide higher accuracy and better warning-times provided enough data
- Closed-loop and real-time Off-Normal SIMulations (ONSIMs) will be used to relieve the burden of needing real SPARC data
 - SPARC data + physics knowledge can potentially fill in unexplored regions of stability-space without explicit experimentation
 - Can potentially implement data earlier with the help of ONSIMs

Progress on development

ONW system structure

Each Off-Normal Event (ONE) has its own ONW module containing control-focused detectors within it

Different control responses may have different optimization metrics SPARC

- A common set of performance metrics to all optimizations is the True Positive Rate (TPR) and False Positive Rate (FPR)
 - TPR = Frequency that the model *correctly* identifies an event
 - FPR = Frequency that the model *falsely* identifies an event
- A flexible optimization metric has been developed for the Disruption Mitigation System (DMS) warnings based on the expected cumulative disruption loads $\langle D \rangle$

Performance Metrics

 f_m = mitigation efficiency

 P_D = natural disruptivity

• Optimization looks for minimum in DMS Metric $\propto \sim \langle D \rangle$

We use an *extension* of <u>Gerhardt's Points-Based</u> model for establishing warning thresholds <u>Point Mapping</u>

- The original Point-Based model [7] maps thresholds → points for each input and then sums them
 - Contours of constant sums draw stability boundaries
 - Used with success on NSTX by both Gerhardt [7] and DECAF [8]
- The *extension* to this model implemented here makes the point-assignments more continuous, and easily tunable

$$Points(FPR) = w * 100 * (1 - FPR)^{s}$$

Total Point Threshold =
$$\sum_{f} (Points)_{f}$$

- 2* primary tuning knobs
 - Weight (w), shape (s): set FPR \rightarrow points mapping
 - w sets the weight of each input
 - **s** sets the shape of the *points* profile

[7] S.P. Gerhardt *et al* 2013 *Nucl. Fusion* **53** 063021
[8] S.A. Sabbagh *et al* Phys. Plasmas 30, 032506 (2023)

4 September 2024

3rd Technical Meeting on Plasma Disruptions and their Mitigation

Progress on development Creation of ONW modules

ONW detector development workflow

DMS detector for *Impurity Accumulation Events* (IAEs) has been demonstrated on C-Mod

- Success with f_{rad} and $\tau_{rad,norm}$ [9] as IAE DMS observers
 - Radiative cooling timescale
 - $\tau_{rad} = W_{th}/P_{rad}$
 - $\tau_{rad,norm} = \tau_{rad} / \langle \tau_E \rangle$
 - FPR,TPR ~ (12%, 85%)
- Warning-time distribution is limited by distribution of radiated collapse durations on Alcator C-Mod
 - $\sigma_{\tau_{Event}} \sim \langle \tau_{Event} \rangle$
- But $\langle \tau_{IAE} \rangle$ should scale well to SPARC for longer τ_{rad} 's

[9] R. Rossi et al 2024 Nucl. Fusion 64 046017

- Success with z_{error} and $z * v_z$ as VDE DMS observers
 - FPR,TPR ~ (1%, 100%)
- Better localized warning-time distribution
 - But still limited by short event durations
 - Which should scale optimistically to SPARC as well for lower γ_{VDE} 's

SPARC

ONW detector development workflow

DMS detector for IAEs has been tested in simulated SPARC-like environment

- We have introduced IAEs and generated a database of stable and disruptive shots
- A DMS detector has been trained/tested on this database
- The performance is reasonable, but the physics fidelity needs to be improved to get more appropriate thresholds

Simulated Database

SPA

Summary

• The structure for SPARC's ONW system has been mostly established

- Control-response structure for ONW modules
- Detectors are designed to meet specific warning-time distributions
- A tunable extension of the Points-Based model is used for triggering warnings
- ONW modules for IAEs, VDEs, and TMs are currently in development
 - DMS detectors for IAEs and VDEs are working well on C-Mod, and scale optimistically to SPARC
 - An IAE warning module has been tested on preliminary simulations of a SPARC-like environment
 - An Avoidance detector for VDEs is also in the works \rightarrow See talk after this one

• Coming soon

- Collaboration with EPFL to integrate ONW development with DEFUSE, and benchmark these physics-driven models against existing scalings and data-driven models
- Planning to test ONW system during ramp-up and ramp-down

Extra slides

• Expected cumulative loads per shot

$$\langle D \rangle = P_D \langle D_{um} \rangle \{ 1 + P_D^{-1} f_m F P R - (1 - f_m) T P R \}$$

- $\langle D_{um} \rangle$ = average un-mitigated disruption load [J or N /shot]
- Expected cumulative loads over lifetime
 - $\langle D \rangle$ x number of shots

- Other* relevant metrics
 - (FPR, TPR) generic model performance
 - $\langle t_{warn} \rangle$ *controllability* performance
 - ONW Failure Rate (OFR) *operation-time* performance
 - Average disruptive load $\langle D \rangle$ machine safety performance

Other physics-driven models considered

- Several simple and interpretable models were investigated
 - Independent thresholds
 - Disruptivity
 - Regression
 - (Gerhardt's) Points-Based model
- Why the Points-Based model?
 - It has similar performance and interpretability to Disruptivity, but scales better at larger dimensionality and is much more flexible to tuning

More detailed Points-model explanation

0.8

0.6

0.4

0.2

0.0

TPR

Example ONW module output (IAE DMS detector on C-Mod)

List of ONEs to be addressed for SPARC

• List based on deVries 2011

Priority

- Likely to come up in nominal operation
 - 1-H) ... nominal H-mod operation
- 2) Unlikely to come up in nominal operation

• IAEs

- SPARC scenarios are expected to operate at higher f_{rad}
- Sensitivity to impurity seeding issues

• VDEs

• High-ish elongation ($\kappa_{area} \sim 1.7$)

• LMs

Generic disruption precursor

Event	Abbr.	Priority
Impurity Accumulation Events	IAE	1
Vertical Displacement Event	VDE	1
Locked Modes	LMs	1
Rotating Tearing Modes	RMs	1
Error Field Locked Modes	EFLMs	1
Sawtooth Crashes	ST	1
Inboard/Outboard Shift		1
Detachment		1
Edge Localized Modes	ELMs	1-H
HL back-transition		1-H
Density Limit	DL	2
Internal Transport Barrier collapse	ITB	2
Low safety factor	LOQ	2
Flux consumption		2

POPSIM + ONSIMs

• **POPSIM** = time-dependent POPCON

- POPSIM is a control-oriented tokamak plasma simulation toolbox built in the machine-learning framework JAX
- Currently being developed at MIT in collaboration with CFS
- Off-Normal Events SIMulations (ONSIMs) are being added to POPSIM
 - Physics fidelity is being improved to meet ONSIM needs

