Summary of dispersive shell pellet injection

experiments on DIII-D
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ABSTRACT ASSIMILATION SCALING WITH LARGER SHELLS/PAYLOADS

Dispersive shell pellet (DSP) injection Is currently being developed as an alternative disruption Comparison of 3.6 mm, 5 mm, and 9.6 Large pellets (5 — 9.6 mm OD) had
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true inside-out TQ. To remedy this, materials with lower atomic numbers than carbon have been
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BACKGROUND & MOTIVATION '
* Successful disruption mitigation requires: Conventional Mitigation (SP1) “Outside-in” with very low assimilation fractions £
— High radiation fraction — — Likely due to low velocity and increased F
— Regulation of CQ duration /e R o ueN perturbation from larger shell mass/surface area
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— Runaway electron avoidance/mitigation

Core SXR
[a.u.]

e Faster 9.6 mm OD pellet had much more rapid

* Issues with outside-in mitigation: shutdown due to higher velocity

— Poor assimilation fraction due to immediate
ablation of radiator —
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* DSPs seek to achieve core impurity deposition
using a non-perturbative shell

Impact of empty 3.6 mm OD HDC shell
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INITIAL DSP EXPERIMENTS ON DIII-D alternative shell materiaf 3

— High assimilation fraction due to payload
deposition location
— Enables use of low-Z payloads

e HDC shells shown to be too
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Several shell/payload materials were developed to Rapid shutdown successfully achieved using 3.6 * Simulations suggest ~ 100 um of Li ol P m
achieve core deposition of the payload mm OD HDC shells with ~ 20 mg of boron dust o e%“%@qa‘ 1 ws

needed for core payload deposition
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' payload release -~ Location launcher required to achieve higher velocities
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Carbon (HDC) t~0.04 mm Boron Dust rapid shutdown a E. Hollmann et al. 2019 Phys. Rev. Lett. launCher used IN previous eXperlmentS
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Lower Ip spike magnitudes (less MHD mixing) 200 [P— . o IIb/h 3 « A variety of dispersive shell pellets have been successfully launched into DIlI-D plasmas, resulting in
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— Lower heat fluences Pellt v (mis) Pellet v (ms) Pellet v (mis)  High assimilation fractions have been observed for 3.6 mm OD HDC shells
: : . — Large shells (5 -9.6 mm OD) were able to assimilate more electrons, but at very low assimilation
— Production of RE seeds (possibly due to better NIMROD modelling results fraftions ( ) / y

preservation of edge flux surfaces)

* Heat fluence and I,, spike magnitude were shown to decrease with pellet velocity (penetration)

K | Bl —mw © — NIMROD modelling confirms experimental trends
e NIMROD modelling consistent with i B * — RE seeds observed at highest velocities (possibly due to less edge perturbation)
experimental trends S | TR * HDC shells found to be too perturbative to observe inside-out TQ
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* Li-coated plastic pellets will be tested in the Spring 2025 run campaign
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