
Andrew Maris, maris@mit.edu / 2024-09-03 1

Correlation of the L-mode density limit with edge collisionality
by

Andrew D. Maris1, Cristina Rea1, Alessandro 
Pau2, Jayson Barr3, Keith Erickson4, Wenhui Hu5, 
Robert Granetz1, and Earl Marmar1

1Plasma Science and Fusion Center, MIT
2Swiss Plasma Center, EPFL
3General Atomics 
4Princeton Plasma Physics Laboratory
5Institute of Plasma Physics, Hefei Institutes of Physical Science 

Presented to

Third Technical Meeting on Plasma Disruptions 
and their Mitigation

3 September 2024
This work is supported by the U.S. Department of Energy, Office of Science, Office 
of Fusion Energy Sciences, under Award DE-SC0014264

mailto:maris@mit.edu


Andrew Maris, maris@mit.edu / 2024-09-03 

● Two-parameter scaling robustly predicts LDL across 
devices 

○ 6x fewer false positives than Greenwald 
fraction

● LDL-P risk metric deployed on DIII-D & utilized for 
successful real-time LDL avoidance (16x)

Multi-machine database & data-driven techniques uncover 
reliable L-mode density limit precursor (LDL-P) risk metric [1]

(2)

[1] Maris et al., 
Submitted, NF (2024)
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The density limit (DL) is a key limitation and risk for future 
tokamaks
● High density crucial for many burning plasma scenarios

○ Increase fusion power density (~ n2)
○ Enable radiative divertor regimes

● ITER & tokamak power plants set to operate near empirical 
Greenwald density limit [2] 

4

Tokamak ITER [3] DEMO [4] CAT [5] ARC [6]

n/nG 0.85 ≥1 0.9-1 0.67

[2] Greenwald et al., NF (1988)
[3] Ikeda, NF (2007)
[4] Wenninger et al., NF (2015)
[5] Buttery et al., NF (2021)
[6] Sorbom et al., Fus. Eng. & 
Des. (2015)
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Experiment and theory point to edge density and temperature as 
key parameters

(5)

Possible causes:
● Enhanced 

turbulent 
transport [7-9]

● Radiative 
instability [10,11]

[7] Manz and Eich, NF (2023)
[8] Rogers et al., PRL (1998)
[9] Diamond et al., Phil. Trans. A. 
(2023)
[10] Zanca et al., PPCF (2022)
[11] Stroth et al., NF (2022)
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We focus on precursor phase as it provides early warning of 
LDL

(6)

Possible causes:
● Enhanced 

turbulent 
transport [7-9]

● Radiative 
instability [10,11]

[7] Manz and Eich, NF (2023)
[8] Rogers et al., PRL (1998)
[9] Diamond et al., Phil. Trans. A. 
(2023)
[10] Zanca et al., PPCF (2022)
[11] Stroth et al., NF (2022)
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We focus on precursor phase as it provides early warning of 
LDL

(7)

Possible causes:
● Enhanced 

turbulent 
transport [7-9]

● Radiative 
instability [10,11]

[7] Manz and Eich, NF (2023)
[8] Rogers et al., PRL (1998)
[9] Diamond et al., Phil. Trans. A. 
(2023)
[10] Zanca et al., PPCF (2022)
[11] Stroth et al., NF (2022)

Goals: 
1. Identify LDL precursor boundary 
2. Utilize boundary for LDL 

prediction
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We develop a database of LDL events in carbon- (DIII-D, TCV) 
and metal-wall (AUG, C-Mod) devices

9

● Large number of LDL and 
non-LDL (“stable”) shots
○ # of LDL shots:  154
○ # of stable shots: 3,193

● Significant variation in # of 
shots per device 

TCV
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Labeling of LDL event phase done by manual inspection

(10)

#191793

where “edge” is 0.85 < ⍴ < 0.95 
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We compare LDL stability metrics (ex. Greenwald fraction) by 
treating LDL prediction as binary classification problem

● A good proximity-to-instability metric:
○ correctly warns shot will end in LDL → high True Positive 

Rate (TPR)
○ rarely misclassifies stable shots → low False Positive Rate 

(FPR)

(11)
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We compare LDL stability metrics (ex. Greenwald fraction) by 
treating LDL prediction as binary classification problem

● A good proximity-to-instability metric:
○ correctly warns shot will end in LDL → high True Positive 

Rate (TPR)
○ rarely misclassifies stable shots → low False Positive Rate 

(FPR)
● We can trade off between TPR and FPR by changing alarm 

threshold
○ Ex. alarm threshold of n/nG = 1.0 will have lower TPR and 

higher FPR than n/nG = 0.6

(12)
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We will report two classification performance metrics

1. “Area Under the ROC 
Curve” (AUC) ∈ [0.5,1]

→ Higher is better

2. False Positive Rate 
(w/ True Positive Rate = 
95%) ∈ [0,1]

→ Lower is better

(13)
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Greenwald fraction has some predictive power, but results in 
significant # of false positives

(15)

~13% False Positive Rate for a single instability would be 
impediment for ITER!
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We use three strategies to find an LDL boundary with higher 
classification accuracy

(16)

1) Use 
classification 
algorithm (not 
linear regression!)

2) Train model to 
identify precursor 
phase

3) Utilize edge 
density and 
temperature

 Linear Support Vector 
Machine (LSVM)
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LSVM classifier finds more accurate stability boundary using 
edge density and temperature

(17)

6x fewer false positives! 
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LSVM also finds reliable boundary using dimensionless 
parameters

(18)

Similarly strong performance
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Boundary using edge parameters achieves strong separation 
of stable and LDL precursor states

(19)

Improved prediction via LDL 
precursor risk metric 

where 𝜈* is effective 
collisionality 𝛽T is normalized 
plasma pressure
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LDL precursor (LDL-P) risk more reliable than Greenwald 
fraction at discriminating LDL

(20)

Stable 
states

LDL-P riskGreenwald fraction

LDL 
precursor 

states
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LDL-P risk utilized at DIII-D for real-time LDL avoidance

(22)

Real-time 
Thomson 
and EFIT
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STATIN algorithm
computes 

LDL-P risk utilized at DIII-D for real-time LDL avoidance

Real-time 
Thomson 
and EFIT
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STATIN algorithm
computes 

Proximity 
Controller or 

ONFR

Real-time 
Thomson 
and EFIT

LDL-P risk utilized at DIII-D for real-time LDL avoidance

LDL-P risk
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STATIN algorithm
computes 

Proximity 
Controller or 

ONFR

Density

Input 
power

When risk > 
threshold

Real-time 
Thomson 
and EFIT

LDL-P risk utilized at DIII-D for real-time LDL avoidance

LDL-P risk
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Real-time 
diagnostics

(26)

STATIN algorithm
computes 

Real-time 
Thomson 
and EFIT

Proximity 
Controller or 

ONFR

DensityGas 
puff

NBI Input 
power

When risk > 
threshold

LDL-P risk utilized at DIII-D for real-time LDL avoidance

LDL-P risk
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Avoided LDLs in 16 of 17 shots with controller ON by reducing 
density & increasing power based on LDL-P risk

(27)

Density 
target

199908 - Controller OFF
→ LDL 💥

199909 - Controller ON
→ Stable ✅

LDL-P risk regulated at 
low value

199908 - Controller OFF
199909 - Controller ON 
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Controller enabled development of stable, gas fueled 
L-mode reaching Greenwald limit

(28)

Density 
target

199908: Controller OFF
→ LDL 💥
→ MARFE
     @ n/nG ~ 0.6

199921: Controller ON
→ Stable ✅
→ n/nG ~ 1 ✅
→ High LDL-P risk    
w/out LDL ❔

199908 - Controller OFF
199921 - Controller ON 
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Non-LDL shots

Density limits have been observed to correlate with upper limit 
on li/q95 

(29)

Control experiment sessions 
including reference LDLs

LDL shots & 
final timeslice

[13]Wesson et al. NF 1989
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Survival at high LDL risk may be due to MHD stability 

(30)

MHD stability?
[14] Cheng 
et al. PPCF 
1987

LDL shots & 
final point

Non-LDL shots

Control experiment sessions 
including reference LDLs
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● Two-parameter scaling robustly predicts LDL across 
devices 

○ 6x fewer false positives than Greenwald 
fraction

● LDL-P risk metric deployed on DIII-D & utilized for 
successful real-time LDL avoidance (16x)

Multi-machine database & data-driven techniques uncover 
reliable L-mode density limit precursor (LDL-P) risk metric [1]

(32)

[1] Maris et al., 
Submitted, NF (2024)
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Additional slides
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Greenwald fraction does not clearly separate precursor 
and stable plasma states

(34)

Stable 
states

LDL 
precursor 

states
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LDL precursor (LDL-P) risk more reliable than Greenwald 
fraction at discriminating LDL

(35)

Stable 
states

LDL-P risk

TPR = 95%
n/nG = 1

Greenwald fraction

LDL 
precursor 

states
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Consider an plasma that enters an unstable phase

(36)
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Intuitively, we want our instability predictor to go from low to 
high when an instability emerges
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We use an alarm threshold to map instability score “yes/no” 
warning
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We use an alarm threshold to map instability score “yes/no” 
warning… this results in an extra degree of freedom
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Greenwald 
fraction

Analytic/ 
“Symbolic”

1. Linear 
Regression

2. Support 
Vector 
Machine

We will compare the Greenwald limit with data-driven density 
limit predictors

(40)

Source: Malato, “How many…” 
yourdatateacher.com

vs. vs.

Database

Standard Machine 
Learning

1. Random forest
2. Neural 

network
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Classification uses both stable & 
unstable data (Linear Support 
Vector Machine)

We also hypothesize that classification will better identify DL 
boundary than regression
Linear regression uses only 
unstable data

(41)

[15] Bernert et al., PPCF (2014)
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Using global features & EAST data: ML methods achieve 
significantly higher performance, but still below ITER’s needs

(42)
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Using edge features: significantly improved density limit 
prediction accuracy achieved by NN, RF and LSVM

(43)

Four-parameter power-law identified by LSVM comparable 
accuracy to far more sophisticated NN & RF
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Using dimensionless features: similarly strong performance 
from data-driven models

(44)
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Average value and standard deviation of global parameters 
for each device in the database

(45)
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Average value and standard deviation of several 
dimensionless parameters in the edge of the plasma

(46)
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Applying same approach when training on all devices and 
testing on DIII-D

(47)
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Comparing with Giacomin-Ricci scaling shows greater 
prediction performance for collisionality-like boundary

Only AUG, TCV, and DIII-D, as PSOL could not be estimated for 
C-Mod database 

(48)
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Edge density limit 
scaling

achieves strong 
separation of cases

SVM identifies edge collisionality-like scaling

(49)

Units:
● 1020 m-3

● MA
● m
● keV
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Stability boundary connected to enhanced transport and 
XPR/MARFE instability

Enhanced turbulence theories 
[17, 18] often point to electron 
adiabaticity

Collisionality boundary is close 
match to adiabaticity, with 
implied turbulence frequency  

XPR/MARFE instability model 
model [19] (assuming n0 ~ nsep 
as in [16]) has similar T 
dependence

although geometric factors 
differ

(50)

[16] Manz and Eich, NF (2023)
[17] Rogers et al., PRL (1998)
[18] Diamond et al., Phil. Trans. A. (2023)
[19] Stroth et al., NF (2022)
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LDL also avoided in current ramp-down scenario 

(51)

Density 
target

199586: Controller OFF
→ LDL 💥

199587: Controller ON
→ Stable ✅

Relatively high n/nG 
achieved without 
disruption

199586 - Cont. OFF
199587 - Cont. ON 
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Example of successful prediction: DIII-D 191793

(52)
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Additionally, we will consider different sets of “features” to train 
the models on

(53)
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This dimensionless boundary is nearly identical to the “edge” 
features boundary

(54)

Dimensionless LDL boundary:

Edge features LDL boundary:

Despite more degrees of freedom in “edge” features case, nearly 
same boundary found

Varies weakly 
in database:
Mean = 3.8

Std dev = 0.44
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LDL risk metric can also be used for H-mode DLs (HDLs) on 
AUG, DIII-D, and TCV 
● HDL database in 

development, currently at 
71 shots

● “HDL precursor” here 
defined as 100ms before 
HDL (or 30 ms for TCV)

(55)

Stable 
states

HDL 
precursor 

states

LDL 
precursor 

states
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HDL overlaps with LDL in Greenwald fraction

(56)

Stable 
states

HDL 
precursor 

states

LDL 
precursor 

states
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For future devices, LDL risk metric predicts significant safety 
margins to HDL

(57)

DEMO
ARC

ITER

Future 
devices 

(approx.) Stable 
states

HDL 
precursor 

states
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Linear Support Vector Machines (LSVMs) identify boundaries 
between data classes
● For linearly separable data, LSVM finds 

boundary that maximizes distance to 
closest points 

● Definition: for n data samples xi ∊ ℝd , n 
labels yi ∊ {-1,1}, vector w ∊ ℝd normal to 
boundary, and intercept b ∊ ℝ, an LSVM 
minimizes the cost function

  

with only one hyperparameter, C

(58)

Cartoon of LSVM 
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Radiator/MARFE movement generally precedes LDL

1) Radiator forms 2) Moves toward core 3) Flips position

(59)
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