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➢Unmitigated disruptions at high performance discharge are unacceptable for 

future reactors.

➢Future reactors are NOT able to provide enough data to train a predictor.

➢Current tokamaks can bear disruptions, and have accumulated a large 

amount of data with various disruption patterns.

➢DA/DG is a promising way to make full use of knowledge from current 

tokamaks and reduce data from the target machine, even 0 shot.

Introduction Model structure, losses and training

Framework & Algorithms

Results

Dataset Description

J-TEXT HL2A EAST

Training Set
(DA/DG)

1021 474 20/0

Validation Set
(DA/DG)

0/255 0/115 20/0

Test Set
(DA/DG)

0 0 506

Note:

➢10 samples are randomly

selected from each shot at 

training.

➢EAST DA validation use the 

rest samples from the same

shots as training.

Basic Idea: apply DA/DG algorithms to every stage throughout training 

➢Diagnostics: Same geometric view and similar measure location

➢Inputs: Euclidean Alignment (EA)[1] ෩𝑋𝑖 =
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➢Representations[2]:𝑀𝑀𝐷 𝑋, 𝑌 =
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➢Operational limits: −
1
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➢Confusing domains[3]: Domain Adversarial training

➢Keep deep advantage

➢Add physical constraints

➢Enhance domain adaptation
[1] H. He and D. R. Wu, IEEE Trans. Biomed. Eng. (2019)
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Cases TPR FPR AUC

DA1 Mixing 65.05% 15.04% 0.7937

DA2 MMD 82.11% 20.89% 0.8492

DA3 DANN 82.63% 22.47% 0.8724

DA4 EA 83.68% 40.19% 0.8141

DA5 EA+MMD 81.05% 32.28% 0.7986

DA6 EA+DANN 81.58% 28.48% 0.8210

Cases (0 shot) TPR FPR AUC

DG1 Mixing 60.00% 11.39% 0.8009

DG2 MMD 74.74% 25.95% 0.8115

DG3 DANN 90.00% 31.01% 0.8343

S1: J-TEXT S2: HL2A T: EAST

Aligned inputs (optional): ෪𝑋𝑆1 = 𝐸𝐴 𝑋𝑆1 , ෪𝑋𝑆2 = 𝐸𝐴 𝑋𝑆2 , ෪𝑋𝑇 = 𝐸𝐴 𝑋𝑇

ℒ𝑑𝑖𝑠𝑟𝑢𝑝𝑡 = 𝜆1ℒ𝐵𝐶𝐸 + 𝜆2ℒ𝑀𝑀𝐷 + 𝜆3ℒ𝑙𝑖𝑚𝑖𝑡

ℒ𝑑𝑜𝑚𝑎𝑖𝑛(𝐷𝐴 𝑐𝑎𝑠𝑒) =
1

2
(𝐵𝐶𝐸𝑆1𝑣.𝑠.𝑇𝐵𝐶𝐸 𝑝𝑙1, 𝑙1 + 𝐵𝐶𝐸𝑆2𝑣.𝑠.𝑇(𝑝𝑙2, 𝑙2))

ℒ𝑑𝑜𝑚𝑎𝑖𝑛(𝐷𝐺 𝑐𝑎𝑠𝑒) = 𝐵𝐶𝐸𝑆1𝑣.𝑠.𝑠2𝐵𝐶𝐸 𝑝𝑙 , 𝑙

ℒ𝐵𝐶𝐸 = 𝐵𝐶𝐸 𝑝𝑑, 𝑑

ℒ𝑀𝑀𝐷(𝐷𝐴 𝑐𝑎𝑠𝑒) =
1

4

𝑀𝑀𝐷 𝑓𝑆1,𝑝𝑜𝑠, 𝑓𝑇,𝑝𝑜𝑠 +𝑀𝑀𝐷 𝑓𝑆2,𝑝𝑜𝑠, 𝑓𝑇,𝑝𝑜𝑠

+𝑀𝑀𝐷 𝑓𝑆1,𝑛𝑒𝑔, 𝑓𝑇,𝑛𝑒𝑔 +𝑀𝑀𝐷 𝑓𝑆1,𝑛𝑒𝑔, 𝑓𝑇,𝑛𝑒𝑔

ℒ𝑀𝑀𝐷 𝐷𝐺 𝑐𝑎𝑠𝑒 =
1

2
𝑀𝑀𝐷 𝑓𝑆1,𝑝𝑜𝑠, 𝑓𝑆2,𝑝𝑜𝑠 +𝑀𝑀𝐷 𝑓𝑆1,𝑛𝑒𝑔, 𝑓𝑆2,𝑛𝑒𝑔

ℒ𝑙𝑖𝑚𝑖𝑡 = −
1
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෍
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(𝑙𝑖𝑚𝑖𝑡𝑖∗ log(𝑝 𝑑𝑖 + (1 − 𝑙𝑖𝑚𝑖𝑡𝑖) ∗ log(1 − 𝑝(𝑑𝑖))

➢ Both DA and DG cases perform acceptable on 

target domain (EAST/J-TEXT).

➢ Aligning inputs CAN diminish difference 

between domains, but disruption related 

knowledge will also be abandoned.

➢ It is the best to align at representation stage.

➢ Best DG case is able to predict most disruptions 

with accurate precursors.

➢ Most of the False Positive cases are due to 

sensitivity to instabilities.

➢ Utilizing target data may reduce FPs.


