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Model structure, losses and training
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Framework & Algorithms
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DA1 Mixing 65.05%  15.04%  0.7937
Basic Idea: apply DA/DG algorithms to every stage throughout training oL Denetvy T L | A MIMID 82.11%  20.89%  0.8492
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» Diagnostics: Same geometric view and similar measure location _ DA3 DANN 82.63%  22.47% 0.8724
o 1 < DA4 EA 83.68% 40.19%  0.8141

> Inputs: Euclidean Alignment (EA)[1] X; = (- X7y XiX[') * X, DA5 EA+MMD  81.05%  32.28%  0.7986
10 (c) DA6 EA+DANN 81.58%  28.48% 0.8210
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» Confusing domains[3]: Domain Adversarial training
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Domain classifier predictor e
» 1 f e knowledge will also be abandoned.
Mixing representations Align positive/negative representation <
from different domains

distribution from different domains =~ | = 0 @————————f——l . » It is the best to align at representation stage.

Feature extractor

> [ s » Best DG case is able to predict most disruptions
Keep deep advan tage Align data distribution from different domains B P P
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: : @ with accurate precursors.
»Add physical constraints Physical
quantities » Most of the False Positive cases are due to
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»Enhance domain adaptation
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Physics Guided Feature Extraction sensitivity to instabilities.
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Same geometric view
Similar measure location

» Utilizing target data may reduce FPs.
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