

Cross-tokamak disruption prediction via domain adaptation and generalization

Fengming Xue^{1,2}, Wei Zheng^{1,2}, Chengshuo Shen¹, Yu Zhong¹, Runyu Luo¹, Yonghua Ding¹,

Zhongyong Chen¹, Bihao Guo³, Zongyu Yang⁴, Dalong Chen³, Fan Xia⁴, and Yuan Pan^{1,2}

¹International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, Huazhong University of Science and Technology

²Institute of Artificial Intelligence, ,Huazhong University of Science and Technology

³Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences

⁴Southwestern Institute of Physics, China National Nuclear Corporation

Introduction

> Unmitigated disruptions at high performance discharge are unacceptable for future reactors.

Future reactors are **NOT** able to provide **enough** data to train a predictor.

Current tokamaks can bear disruptions, and have accumulated a large

amount of data with various disruption patterns.

>DA/DG is a promising way to make full use of knowledge from current

Model structure, losses and training

tokamaks and reduce data from the target machine, even 0 shot.

Dataset Description

 $-\lambda \frac{\partial L_l}{\partial \theta_f}$ Inputs (or Aligned inputs) X Domain label, l Feature extractor $\mathcal{F}(X; \theta_{feature})$ \mathcal{L}_{domain} $\partial \theta_1$ S₁: J-TEXT S₂: HL2A T: EAST Aligned inputs (optional): $\widetilde{X_{S_1}} = EA(X_{S_1}), \widetilde{X_{S_2}} = EA(X_{S_2}), \widetilde{X_T} = EA(X_T)$ $\mathcal{L}_{disrupt} = \lambda_1 \mathcal{L}_{BCE} + \lambda_2 \mathcal{L}_{MMD} + \lambda_3 \mathcal{L}_{limit}$ $\mathcal{L}_{domain}(DA \ case) = \frac{1}{2} (BCE_{S_1v.s.T}BCE(p_{l1}, l_1) + BCE_{S_2v.s.T}(p_{l2}, l_2))$ $\mathcal{L}_{domain}(DG \ case) = BCE_{S_1v.s.s_2}BCE(p_l, l)$ $\mathcal{L}_{BCE} = BCE(p_d, d)$ $\mathcal{L}_{MMD}(DA \ case) = \frac{1}{4} \begin{pmatrix} MMD(f_{S_{1},pos}, f_{T,pos}) + MMD(f_{S_{2},pos}, f_{T,pos}) \\ + MMD(f_{S_{1},neg}, f_{T,neg}) + MMD(f_{S_{1},neg}, f_{T,neg}) \end{pmatrix}$ $\mathcal{L}_{MMD}(DG \ case) = \frac{1}{2} \left(MMD(f_{S_1,pos}, f_{S_2,pos}) + MMD(f_{S_1,neg}, f_{S_2,neg}) \right)$ $\mathcal{L}_{limit} = -\frac{1}{N} \sum_{i=1}^{N} (limit_i * \log(p(d_i) + (1 - limit_i) * \log(1 - p(d_i))))$

Results

Framework & Algorithms

Basic Idea: apply DA/DG algorithms to every stage throughout training > Diagnostics: Same geometric view and similar measure location

>Inputs: Euclidean Alignment (EA)[1] $\widetilde{X}_i = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i^T\right)^{-\frac{1}{2}} X_i$

 $\succ Representations[2]:MMD(X,Y) = \left\|\frac{1}{n}\sum_{i=1}^{n}\phi(x_i) - \frac{1}{m}\sum_{j=1}^{m}\phi(y_j)\right\|_{u}^{2}$ >Operational limits: $-\frac{1}{N}\sum_{i=1}^{N}(l_i * \log(p(y_i) + (1 - l_i) * \log(1 - p(y_i))))$ >Confusing domains[3]: Domain Adversarial training

Tokamak 2 Tokamak 1 Disruptivity Tokamak N **Operational limits guided** loss function Disruption

Cases	TPR	FPR	AUC
DA1 Mixing	65.05%	15.04%	0.7937
DA2 MMD	82.11%	20.89%	0.8492
DA3 DANN	82.63%	22.47%	0.8724
DA4 EA	83.68%	40.19%	0.8141
DA5 EA+MMD	81.05%	32.28%	0.7986
DA6 EA+DANN	81.58%	28.48%	0.8210

Cases (0 shot)	TPR	FPR	AUC
DG1 Mixing	60.00%	11.39%	0.8009
DG2 MMD	74.74%	25.95%	0.8115
DG3 DANN	<i>90.00%</i>	31.01%	0.8343

Both DA and DG cases perform acceptable on target domain (EAST/J-TEXT).

> Aligning inputs **CAN** diminish difference

between domains, but disruption related

knowledge will also be abandoned.

> It is the best to align at **representation** stage.

Best DG case is able to predict most disruptions

with *accurate* precursors.

Most of the False Positive cases are due to

sensitivity to instabilities.

Utilizing target data may reduce FPs.

Contact: fmxue@hust.edu.cn, zhengwei@hust.edu.cn

International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics

Institute of Artificial Intelligence

