End-to-end in-pulse data analysis at ITER:

from magnetics measurements to live display

P. Abreu¹, L. Abadie¹, L. Appel², S. McIntosh¹, S. Pinches¹, ¹ ITER Organization ² UKAEA

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

- Provide a consistent **interpretation of the plasma state** (with uncertainties) from the measurements **during** each pulse.
- More specifically to provide accurate measurement parameters (MP) in time to prepare the next pulse in the control room.

- Magnetics synthetic diagnostic
- Data rates, raw data encoding and decoding
- Equilibrium reconstruction
- Performance for data access

- Obtain data by:
 - Mapping data from other machines/experiments
 - Synthetic diagnostic modelling
- Test the system with:
 - Realistic data rates
 - Realistic data noise generation

- Synthetic Diagnostics (SD) are used for various types of applications:
 - Design: to optimise the design and performance of the real diagnostic
 - Control: to support the development of control algorithms needed for the design of the Plasma Control System (PCS)
 - Physics: to support the physics interpretation and analysis
- In all these contexts, ITER uses the IMAS standard and further tools (also planned for the in-pulse analysis) like:
 - Persistent actors (Muscle3)
 - Bayesian frameworks (IDA and Minerva)

- Starting with a discharge scenario (eg, from JINTRAC, ASTRA, DINA, ...)
- Go back and re-create the raw diagnostic measurements for that scenario
- The first step is the magnetic measurements
- From there, we can reconstruct a plasma equilibrium
- And from an equilibrium most diagnostics and plasma parameters can be inferred
- And compared with original scenario data

Synthetic Diagnostics for Magnetic Reconstruction

14th IAEA TM on Control Systems, Data Acquisition, Data Management and Remote Participation in Fusion Research

IDM UID: BWB7V8 Page 7

List of signals from the magnetic diagnostic

						-
	name	identifier	diagnostic	number	IDS node	
AD	Partial Flux Loops	55.AD.00-MSA	saddle	131	flux_loop	
AE	Continuous Flux Loops (Inner)	55.AE.00-MCH	saddle	40	flux_loop	
AF	Diamagnetic Loop (Main)	55.AF.00-MCL	saddle	3	flux_loop	
AH	Diamagnetic Saddles (Inner)	55.AH.00-MSA	saddle	6	flux_loop	
AI	MHD Saddles	55.AI.00-MSA	saddle	81	flux_loop	
A3	Tangential Coils (Outer)	55.A3.00-MLF	mirnov	180	b_field_pol_probe	
A4	Normal Coils (Outer)	55.A4.00-MLF	mirnov	180	b_field_pol_probe	
A5	Tangential Steady State Sensors	55.A5.00-MSS	hall	60	b_field_pol_probe	
A6	Normal Steady State Sensors	55.A6.00-MSS	hall	60	b_field_pol_probe	
AA	Tangential Coils (Inner)	55.AA.00-MLF	mirnov	144	b_field_pol_probe	
AB	Normal Coils (Inner)	55.AB.00-MLF	mirnov	72	b_field_pol_probe	
AJ	HF Sensors	55.AJ.00-MHF	mirnov	207	b_field_pol_probe	
AL	Divertor Equilibrium Sensors	55.AL.00-MLF	mirnov	12	b_field_pol_probe	
A9	Diamagnetic Compensation (Outer)	55.A9.00-MLF	mirnov	36	b_field_tor_probe_	
AC	Toroidal Coils	55.AC.00-MLF	mirnov	9	b_field_tor_probe	
AG	Diamagnetic Compensation (Inner)	55.AG.00-MLF	mirnov	6	b_field_tor_probe	
AP	Diamagnetic Compensation (Outer)	55.AP.00-MRG	rogowski_coil	358	rogowski_coil	

14th IAEA TM on Control Systems, Data Acquisition, Data Management and Remote Participation in Fusion Research © 2024, ITER Organization 120 1465 1585

- predictMagnetics:
 - read in pf_active, pf_passive, tf and lp to produce a magnetics IDS
 - adds consistent noise:
 - noise with a 1/f spectrum to simulate the effects of signal integrators
 - relative to signal intensity if energized, eg, std. dev. = 1% of average
 - absolute values when not energized, eg, std. dev. = 10kA
 - ready to be use as input for equilibrium reconstruction

Magnetics Synthetic Diagnostic

time [s]

14th IAEA TM on Control Systems, Data Acquisition, Data Management and Remote Participation in Fusion Research

IDM UID: BWB7V8 Page 10

Magnetics Synthetic Diagnostic

iter china eu india japan korea russia usa

© 2024, ITER Organization

IDM UID: BWB7V8 Page 11

- 1585 signals for magnetics
 - 120 are proportional (voltages)
 - 1385 are integral (voltage and flux/field waveforms)
- From 2 MHz to 10 kHz during the pulse
- 2 MHz for 1 min pre- and post- pulse

• Currently testing:

150s @ 1kHz + 2s pre+post @ 2MHz _____ 10 GB

- Diagnostic data arrives encoded as a stream of 64-bit unsigned integers.
- To generate synthetic data we encode from floating-point doubles to 64-bit unsigned int.
- Knowing the range, we can decode to floating-point doubles.

$$x_{dec} = (x_{enc} + f_{min}) \times \frac{\Delta f}{\Delta R} = x_{enc} \times \frac{\Delta f}{\Delta R} + f_{min} \times \frac{\Delta f}{\Delta R}$$

with:
$$\Delta f: \text{ final range} = f_{max} - f_{min}$$

Scaling Offset
$$\Delta R: \text{ DAO range} = 2^{N} - 1$$

- Using EFIT++.
- Needs:
 - wall, pf_passive: static data only, from Machine Description
 - pf_active, tf, magnetics: static data (MD) and dynamic data (from scenario simulation).

Equilibrium reconstruction

by L Appel @ UKAEA

Data flow

Timings per time point (single core)

🕇 🔁 china eu india japan korea russia usa

© 2024, ITER Organization

Page 17

Conclusions & future work

Conclusions:

- Workflow created from simulation to synthetic magnetics data to equilibrium.
- Using realistic data access patterns (data decoding) and noise.
- Ready for live display in the control room.

Conclusions & future work

Conclusions:

- Workflow created from simulation to synthetic magnetics data to equilibrium.
- Using realistic data access patterns (data decoding) and noise.
- Ready for live display in the control room.

Next steps (~1 year):

- UDA+IMAS performance (XPOS ←→ SDCC) needs to improve by ~2 orders of magnitude.
- Need to implement data streaming.
- Thorough comparison with experimental data \rightarrow experimental data mapping

Thank you!

Questions? Comments?

Reminder on IMAS

Integrated Modelling & Analysis Suite is the collection of physics software that will be used to support ITER operations and research as defined in the ITER Integrated Modelling Programme.

Data Model	 Machine independent data structures Can serve as code coupling interface Meta-data and provenance 				
Generic Tools	 Data access, storage, discovery, manipulation, visualization Support for simulation, management and exploitation of datasets / databases 				
Applications	 Independent physics codes Complex workflows Experimental data processing pipelines Multi-machines databases 				

F. Imbeaux et al 2015 Nucl. Fusion 55 123006

Magnetics Synthetic Diagnostic

- predictMagnetics (by L. Appel @ UKAEA):
 - read in pf_active, pf_passive, tf and lp to produce a magnetics IDS
 - adds consistent noise
 - ready to be use as input for equilibrium reconstruction

