cea irfm

A modern Infrastructure to manage shared diagnostic and very high amount of data

Presented by Julian COLNEL on behalf the WEST team

IRFM CEA: D. Mazon, D. Guibert, Y. Peysson IPPLM: M. Chernyshova, K. Malinowski, T. Czarski, E. Kowalska-Strzęciwilk, S. Jabłoński, M. Jagielski WUT: A. Wojeński, G. Kasprowicz, K. Poźniak, P. Linczuk, P. Kolasińsk

About me

Julian COLNEL

CODAC & Software engineer at CEA / IRFM Involved in the Plasma Control System Architecture (Real Time programming)

Designer and developer of the Pulse Sequence Expert system, the real-time communication library, the acquisition quality chain tools.

Responsible of the GEM Westbox integration

Designer and developer of the new IRFM Pinboard

Data Acquisition & Process Duty Officer

Summary

1. The WEST Tokamak

Quite a big data producer

2. The Tungsten density measurement

Just a little bit of physics

3. The WEST acquisition infrastructure

An effective one

4. The modern acquisition method

How to take into account the new needs

The WEST Tokamak

Quite a big data producer

A modern Infrastructure to manage shared diagnostic and very high amount of data - IAEA TM 2024 Sao Paolo

cea

A superconducting MA class full W tokamak

Superconducting tokamak
 Actively cooled Plasma Facing Components

Long pulse operation (1000 s) Means a lot of data

WEST – the recent record 2024/03/08

364s (6min) and 1,15GJ of Lower Hybrid Heating

A modern Infrastructure to manage shared diagnostic and very high amount of data - IAEA TM 2024 Sao Paolo

Cez

Inside WEST : a full W environment

(W coatings on CuCrZr/CFC, W bulk)

The Tungsten's benefits & drawbacks

Highest melting point of any metal and maintains strength at high temps

Do not retain Tritium > no activation !

Gradually (but slightly) **eroded** by the plasma

- \rightarrow Damage induced
- → Impacts plasma performance even with a small amount of W (Cw 0,01%)

>> the Tungsten density is an important measurement to achieve

2 The Tungsten ratio measurement

Just a little bit of physics

A little bit of physics

particle

E=mc²

Electromagnetic spectrum

Each radiation has a **specific wavelength** (and energy which is inversely proportional).

photon

E=hf

For tungsten some interesting radiation have a wavelength in between 100ev to 15kev >> SOFT X RAY

A little bit of physic : the general case

Tungsten emissivity general equation is :

 $L_W(h
u, T_e, n_e, \vec{\Gamma}_{W,q})$

A little bit of physic (just a few last)

Detection principles

An electric charge is measured and photon energy is deduced by computation

This gave an integrated measurement on a line of sight

cea

Thanks to tomographic inversion we deduce **emissivity radially**

The real instrument

Vertical Camera

The instrument contents :

- the **detector** which has so stay at a certain distance of the high temperature
- An **helium buffer** : that helps photon to reach the detector
- An inner **Fe55 source** : a known source to calibrate
- A **Be pinhole** : to limit the amount of photon

Figure 9. The GEM detector characteristics for two 55 Fe reference sources with different intensity for *XY* array structure: planar distribution (left), energy spectra (right).

Data produced

Cez

The GEM instrument is a **photon counter** .. It produces 100Gb for a 300s pulse

50 data acquisition unit @WEST >> 5T per pulse ...

But the needed value is actually "only" the Tungsten density, which is obtain by **post-processing**.

The WEST Acquisition infrastructure

An effective one

cea

The Acquisition World

<u>cea</u>

The world of .. security

cea

What is the problem ?

Data are growing (much too) fast .. Faster than the network

The problem

Network link are not easy to change :

- evolutions are limited
- it's highly expensive

Acquisition network remains a IPV4 network .. That means .. Only 255 devices possibles

The modern acquisition method

How to take into account the new needs

The requirements

01

IMPORTANT AMOUNT OF LOCAL DISK

SSD support high magnetic fields .. Allow to avoid useless and time consuming data transfert

A PRIVATE NETWORK

To allow multiple actors sharing data without impacting the others acquisition units.

04

USE & SHARE STANDARD

A lot of requirements are common : pulse sequence synchronization, parameter readings, datafile saving..

Cez

NO NEED LICENCES

Also a need of cost effectivness but mainly for long terme maintenance purpose..

The WESTBOX gateway

A specialized **advanced** computer called « Westbox » acts as **gateway** between GEM network and acquisition network with **65Tb** of SSD available (650Pulses \rightarrow ~6 weeks)

WESTBOXES are synchronized with Pulse experiments by an expert system called « supervisor »

A modern Infrastructure to manage shared diagnostic and very high amount of data - IAEA TM 2024

The manager

A raspberry Pi has been chosen to manage the different device

- Backup is easy
- Robust
- Lite and simple to program : bash/Php
- Cost effective

Autonomous & dedicated remote powerstrip

First function of the manager, turning on/off the different units thanks to a **dedicated HTML interface**.

cea irfm		WEST GEM Supe	rvisor @ 20/0	5/2023 12:56:40		
PowerStrip	Tailon	CESI	Live VIDE	.O Dati	a Viewer	IPMI/BMC
GEM ON OGEM ON	RPI ON Power Supply	ON 873 W HV 0FF		Measurmt Syst. 🛛 N 🔵 199 W	WESTBox	Downloader 🛑 0FF
·						
Last Command : 20230609 15:15 : command run by Someo 20230609 15:20 : command run by Andrze 20230620 09:41 : command run by Andrze	>> shutdown		valve is Openeo valve is Closeo			
		Julabo	is OFF Julabo	on		
		GEM	GEM	DOWN		

Autonomous & dedicated slow controller

A **basic schema**: lift up or down by actuating a motor

As there is no **side effect** on other system, we are able to manage locally.

Motor are managed with a ABB driver

A modern Infrastructure to manage shared diagnostic and very high amount of data - IAEA TM 2024 2

Autonomous & dedicated Cooling system

basic Schema : turn on or off the cooler for electronic boards.

No side effect if GEM detector is in trouble.

Manageable through **RS232 communication** (converted in USB on raspberry)

Autonomous & dedicated Gas injection & measurement

The GEM requires a precise gas injection to retrieve and manage :

the **helium pressure** in the buffer Helium is needed for the photon not to be absorbed and to reach the detector

The **argon pressure** in the detector : argon is needed for the photon to generate an electron

\rightarrow Impact on the computation

🖀 bronkhorst-propar latest	Docs » Propar API			
Search docs Introduction	Propar API			
Examples	Instrument			
Instrument	<pre>class propar.instrument(comport, address=128, baudrate=38400, channel=1, serial_ 'serial.serialposix.Serial'>)</pre>			
Master Database	Implements a propar instrument for easy access to instrument parameters.			

Autonomous & dedicated cabinet

[D. Guibert et al., SOFT 2024]

Compact design of the cabinet

Entirely **exportable** for laboratory test

Data automatically produced in IMAS Format

5 Conclusion

Still some works to do

Results and plans

The modern acquisition methods implemented has succeeded taking into account different « standard » needs (synchronization, data storage, postprocessing)

For GEM purpose it has shown his benefits : the acquisition is now **automatized**.

Horizontal camera to install for improve precision

Next step will be to produce data on the **real-time network** (means at least in milliseconds) in order to have the tungsten density live.

Obrigado ! Thank you ! Merci

The problem -

Vertical Camera

cea

[D. Mazon et al., JINST 2017]

A modern Infrastructure to manage shared diagnostic and very high amount of data - IAEA TM 2024 Sao Paolo

 \rightarrow

A little bit of physic (just a few last)

General equation for emissivity of a given **S source** (which have different ions **Zs**) source is :

$$\varepsilon_{S}(h\nu, T_{e}, n_{e}, \vec{\Gamma}_{S,q}) = n_{e}n_{S}\sum_{i=0}^{Z_{S}} f_{S,q}(T_{e}, n_{e}, \vec{\Gamma}_{S,q}) \cdot \left[\epsilon_{S,i}^{f-f}(T_{e}, n_{e}, h\nu) + \epsilon_{S,i}^{f-b}(T_{e}, n_{e}, h\nu) + \epsilon_{S,i}^{b-b}(T_{e}, n_{e}, h\nu)\right]$$

We ignore the transport term in the case of high temperature and high atomic number Z We assume plasma is emittinggsten density: only W impurities (we even H) $n_W \simeq \frac{\varepsilon_{SXR}}{n_e, L_W}$

Cooling factor $L_{S}(hv, T_{e}, n_{e}, \vec{\Gamma}_{S,q}) \rightarrow L_{W}(hv, T_{e}) \rightarrow Lw$ tabulated

Electronic Density Ne is measured by interferopolarymetry
 Cooling factor of the tungsten Lw is tabulated
 → Emissivity has to be measured