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Background
p Plasma disruption can seriously damage tokamak. It's crucial to reliably assess plasma disruptivity to 

avoid or mitigate its impact.
p Before a disruption, plasma usually goes through a complex chain of precursor events, such as an 

increase in plasma instabilities and unexpected transitions in confinement modes. So, these 
precursor events also need to be monitored to ensure timely action.[2-4].

[1] de Vries, et al.(2016). Requirements for Triggering the ITER Disruption Mitigation System. Fusion Science and Technology, 69(2), 471–484. 
[2] Diamond, Patrick H., et al. “How the Birth and Death of Shear Layers Determine Confinement Evolution: From the L → H Transition to the Density Limit.” Philosophical Transactions of the Royal 

Society A: Mathematical, Physical and Engineering Sciences, vol. 381, no. 2242, Feb. 2023, p. 20210227. 
[3] Seo, Jaemin, et al. “Avoiding Fusion Plasma Tearing Instability with Deep Reinforcement Learning.” Nature, vol. 626, no. 8000, Feb. 2024, pp. 746–51.
[4] Orozco, David, et al.“Neural Network-Based Confinement Mode Prediction for Real-Time Disruption Avoidance.”IEEE TRANSACTIONS ON PLASMA SCIENCE, vol.50, no.11,Nov 2022,pp. 

4157–64, 
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Figure 1. (Left) Event Chain of a Disruption Ending Shot (EAST #93678); (Right) MARFE Movement Observed in Camera
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Related Research
p Assessing disruptivity and monitoring its precursors with first-principles methods is difficult[5]
p Recent works highlight the potential of machine learning methods in these tasks. (Table 1)
p Notably, some studies combine these tasks into a unified model(multi-task model), improving the 

performance and interpretability of disruption prediction[7].
p However, EAST lacks such multi-task models,and creating a high-performance, easily transferable 

one is still a major challenge.

Tasks Methods and Research Content Device Performance References

Disruption
Prediction

A review on disruption prediction with artificial 
intelligence techniques - - J. Vega, et al. Nature Phys. 18, 741-750(2022)

CNN+Attention+MMD: Model trained on EAST 
carbon wall database,then transferred to metal 
wall database.

EAST AUC: 0.97/0.93 [11] Guo B H, et al. 2023 Nucl.Fusion 63 094001

Instability
detection

Random Forest: Prediction of MARFE-movement EAST ACC 85%–90% Hu W H, et al. Chin. Phys. B 32, 075211 (2023)

TCNN+LSTM: Identification of MHD EAST ACC: 98.38% Lingyi Kong et al 2024 PlasmaPhys.Control.Fusion 66 
015016

Confinement 
Mode

identification

MLP: identification of H/I/L mode EAST ACC: 96.03% [6] K.N. Yang,et al. Nucl. Fusion 64 (2024) 016035 (11pp)

CNN: Real-time identification of H/L mode DⅢ-D ACC: 98% David Orozco, et al. IEEE TPS, VOL.50, NO.11, 2022
Attention+LSTM: identification of H/L mode TCV κ-statistic: 0.94 F.Matos,et al. Nucl. Fusion 61 (2021) 046019 (11pp)

Multiple tasks 
integrated

Multi-task learning: detect various instability 
events and simultaneously predict disruptions. DⅢ-D AUC: 0.94 [7] Zhu J X, et al. Nucl. Fusion 63 (2023) 046009 (14pp)

Table 1: Current State of Related Research

[5] De Vries P.C., Pautasso G., Humphreys D., Lehnen M., Maruyama S., Snipes J.A., Vergara A. and Zabeo L. 2016 Fusion Sci. Technol. 69 471–84
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Our work
p We developed a multi-task model that can predict disruptions, detect macro-instabilities (ELMs and 

MARFE Movement), and identify confinement modes (H/I/L mode or just ohmic heating) all at once.
p In EAST carbon wall database, Our multi-task model achieved best performance in disruption 

prediction and ELMs detection, and outperformed single-task models in other tasks.
p As shown in Fig. 2, our model takes the current time and a 100ms data window before it as input. The 

output is the result of various tasks at the current time. All signals come from the Plasma Control System 
(PCS) with a 1 kHz sampling rate, making the model suitable for real-time applications in the future.

Figure 2. Examples of Partial Input and Output of Our Multi-Task Model
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Data source
p Our multi-task dataset is from 9756 EAST discharges (2015-2020). Data from 2020 onwards are from the 

metal wall environment, while earlier data are from the carbon wall environment.
p The dataset includes extensive labels for disruptions, instabilities, and confinement modes, all provided 

by reliable experts who have extensively studied these phenomena on EAST[6,8,9,10].Due to limited 
expert resources, instability and confinement mode labels cover only part of the shots.

p The dataset is divided by shot numbers(Table 2). For comparison with previous disruption predictions, 
the disruptive/undisruptive shot numbers in each dataset match those in Guo's research[11] exactly.

Table 2: Dataset division (The unit of Pos/Neg time is seconds)
Annotation Training Set Validation Set Carbon Wall Test Set Metal Wall Test Set

Disruption Shots Number:6516
disruptive shots:1993

Shots Number:1399 
disruptive shots:431

Shots Number:1234
disruptive shots:437

Shots Number:297 
disruptive shots:80 

ELM Shots Number:130 
Pos Time:401.94,Neg Time:517.81

Shots Number:29 
Pos Time:63.08,Neg Time:136.69 

Shots Number:31 
Pos Time:70.01,Neg Time:154.4 

Shots Number:133 
Pos Time:531.5,Neg Time:682.86 

MARFEmove Shots Number:21 
Pos Time:7.61,Neg Time:56.8, 

Shots Number:5 
Pos Time:4.48,Neg Time:10.9

Shots Number:6 
Pos Time:3.68,Neg Time:13.86 

Shots Number:49 
Pos Time:24.62,Neg Time:370.8 

H_Mode Shots Number:84 
Pos Time:422.37,Neg Time:0.0, 

Shots Number:15 
Pos Time:71.69,Neg Time:0.0

Shots Number:16 
Pos Time:74.07,Neg Time:0.0 

Shots Number:101 
Pos Time:532.2,Neg Time:0.0

I_Mode Shots Number:53 
Pos Time:80.6,Neg Time:0.0, 

Shots Number:17 
Pos Time:24.44,Neg Time:0.0

Shots Number:21 
Pos Time:31.94,Neg Time:0.0 

Shots Number:19 
Pos Time:39.74,Neg Time:0.0

L_Mode Shots Number:46 
Pos Time:80.4,Neg Time:0.0, 

Shots Number:10 
Pos Time:26.82,Neg Time:0.0

Shots Number:19
 Pos Time:38.48,Neg Time:0.0 

Shots Number:10 
Pos Time:101.1,Neg Time:0.45

OHM_Mode Shots Number:26 
Pos Time:131.06,Neg Time:0.0,

Shots Number:10 
Pos Time:43.57,Neg Time:0.0

Shots Number:10 
Pos Time:52.77,Neg Time:0.0

Shots Number:21 
Pos Time:107.72,Neg Time:0.0 
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 Input Signal
p We chose plasma signals for this study based on literature[4-10], PCS availability, EAST researchers 

suggestions, and minimizing signal numbers.
p Utilizing Short-Time Fourier Transform (STFT) on Dα signals to extract time-frequency information for 

feature enhancement, we obtained 22 input signals (Table 3).

Symbol Signal description Symbol Signal description

p_RAD Radiated power rad_input_frac
�������� �����
����� �����

DaL1 Deuterium Balmer-α line emission 
spectrum (lower first channel) DaU2 Deuterium Balmer-α line emission spectrum 

(upper second channel)
ne Electron density Z_cur_lmsz Linearly estimated vertical displacement
ip Plasma current pxuv32 Bolometric radiation measurement
Wmhd Plasma stored energy p_LH Lower hybrid heating power
v_loop Loop voltage kappa Elongation ratio

ip_error_normalized
������ ������� − ��������� ������

������� ��������� ������ Greenwald_fraction
�������� �������
��������� �������

q95 Safety factor at the 95% flux surface ne_error density − current programed plasma 
density

STFT_DaU2_50-100Hz STFT of DaU2 in the 50-100 Hz range STFT_DaL1_50-100Hz STFT of DaU2 in the 50-100 Hz range
STFT_DaU2_100-150Hz STFT of DaU2 in the 100-150 Hz range STFT_DaL1_100-150Hz STFT of DaL1 in the 100-150 Hz range
STFT_DaU2_150-200Hz STFT of DaU2 in the 150-200 Hz range STFT_DaL1_150-200Hz STFT of DaL1 in the 150-200 Hz range

Table 3：Signal Selection

[8] Kim, S.K., Shousha, R., Yang, S.M. et al. Highest fusion performance without harmful edge energy bursts in tokamak. Nat Commun 15, 3990 (2024). 
[9] Hu, Wenhui, et al. “Prediction of Multifaceted Asymmetric Radiation from the Edge Movement in Density-Limit Disruptive Plasmas on Experimental Advanced Superconducting 
Tokamak Using Random Forest.” Chinese Physics B, vol. 32, no. 7, July 2023, p. 075211. Institute of Physics, 
[10] W.H. Hu, et al. “Real-Time Prediction of High-Density EAST Disruptions Using Random Forest.” Nuclear Fusion, vol. 61, no. 6, June 2021, p. 066034.
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 Our Model Structure
p Our model has a feature extractor and several task classifiers. The feature extractor is a multi-scale 

convolutional network[6], and the task classifiers are linear fully connected neural networks.
p To enhance performance, we constructed cascade relationships between task classifiers, creating a 

second model structure.
p Model input: using the current time and the preceding 100ms window of signals from Table 3 as input, 

forming a 100*22 matrix.
p All hyperparameters are obtained using a genetic algorithm on the validation set.
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Figure 3.  (Left) Parallel configuration of task classifiers;  (Right) Cascade configuration of task classifiers.
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Best disruption prediction: multi-task cascade model

Figure 4: (Left) Single-task model;  (Middle) Multi-task parallel model; (Right) Multi-task cascade model.

p For disruption prediction, the multi-task model is more accurate and gives earlier warnings than the 
single-task model.

p Also, the multi-task cascade model achieves the best performance(AUC 0.98 and Mean warning time 
1.146s) on the EAST carbon wall database ( previous record[10] was AUC 0.97 and Mean time 0.755s ).

This ROC curve shows 
the True Positive Rate vs. 
False Positive Rate for 
different thresholds. The 
r e d  l i n e  i n d i c a t e s 
random guessing (AUC 
=  0 . 5 ) .  H i g h e r  A U C 
m e a n s  b e t t e r 
performance.

The x -ax i s  shows  the 
l e a d  t i m e  b e f o r e 
disruption (warning time), 
and the y-axis shows the 
fraction of disruptions 
detected by that time.

AUC=0.9567 AUC=0.9766 AUC=0.9830
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Best instability detection: multi-task cascade model

Figure 5: (Left) Single-task model;  (Middle) Multi-task parallel model; (Right) Multi-task cascade model.

p The multi-task cascade network outperforms the multi-task parallel network in instability detection, 
which is better than single-task models.

p The ELM detection AUC of multi-task cascade network is 0.991, the best performance so far on 
EAST carbon wall database.
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Correlation between instability detection and disruption prediction

ELMs

MARFE-Move

 DIS warning

p Through multi-task joint learning, it was observed that instability detection tasks impact disruption 
prediction(Fig.6), enhancing both interpretability and performance of the predictions.

p The detection score of ELMs is negatively correlated with disruptivity, while the detection score of 
MARFE movement is positively correlated with disruptivity. This implies the presence of ELMs decrease 
disruptivity, while MARFE movement increases it,matching experimental experience.

p Specifically, although ELMs may lead to more severe instabilities, they do not directly cause disruptions. 
Stable ELM behavior indicates orderly energy release at the plasma edge, representing lower 
disruptivity.

Figure 6. Instability detection and disruption prediction impact each other (EAST Test Shot: 70611)
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Best Confinement Mode Identification: multi-task parallel model

Figure 7: (Left) Single-task model;  (Middle) Multi-task parallel model; (Right) Multi-task cascade model.

ACC 90.61% ACC 91.48%

p For confinement mode identification, the model outputs the class with the highest score directly. 
Therefore, model performance can be directly measured by the ACC from the confusion matrix.

p The best model is the multi-task parallel model, achieving an ACC 91.48%, which is below the 
performance reported in the literature[6]. However, our model doesn't need high-frequency signals to 
detect WCM, making the model suitable for real-time applications in the future.

ACC 91.06%
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Confinement Mode Transition Identification 

p The model can identify H-
mode, L-mode, I-mode, or 
just ohmic heating. It can also 
i n d i r e c t l y  i d e n t i f y  t h e 
transitions between different 
confinement modes.

p However, the accuracy of 
t r a n s i t i o n  i d e n t i f i c a t i o n 
(Specific time of transition) 
needs improvement.
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Figure 8. Confinement mode identification (EAST Test Shot: 77572)



16

Outline

Introduction

Methods

Results and discussion

Future work



17

Enhancing Transition and Cross-Wall Performance

p To enhance the performance in identifying the 
specific time of transition, a specialized transition 
ident i f icat ion task i s  added based on the 
confinement mode recognition.

p To address the issue of performance degradation 
across walls[11], a domain adversarial task is 
added.
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Figure 9. performance declines when working across walls[11] Figure 10. Future model structure 
[11] Guo, B. H., et al. Nuclear Fusion, vol. 63, no. 9, July 2023, p. 094001. Institute of Physics,
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