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Background
p Plasma disruptions can seriously damage tokamaks, so predicting them is crucial for mitigation and 

avoidance.[1].
p Disruptions are usually preceded by a series of events, such as the increase of plasma instabilities 

and unexpected transitions in confinement modes. It is also essential to identify instabilities and 
confinement modes[2-4].

[1] de Vries, et al.(2016). Requirements for Triggering the ITER Disruption Mitigation System. Fusion Science and Technology, 69(2), 471–484. 
[2] Diamond, Patrick H., et al. “How the Birth and Death of Shear Layers Determine Confinement Evolution: From the L → H Transition to the Density Limit.” Philosophical Transactions of the Royal 

Society A: Mathematical, Physical and Engineering Sciences, vol. 381, no. 2242, Feb. 2023, p. 20210227. 
[3] Seo, Jaemin, et al. “Avoiding Fusion Plasma Tearing Instability with Deep Reinforcement Learning.” Nature, vol. 626, no. 8000, Feb. 2024, pp. 746–51.
[4] Orozco, David, et al.“Neural Network-Based Confinement Mode Prediction for Real-Time Disruption Avoidance.”IEEE TRANSACTIONS ON PLASMA SCIENCE, vol.50, no.11,Nov 2022,pp. 

4157–64, 
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Figure 1. (Left) Event Chain of a Disruption Ending Shot (EAST #93678); (Right) MARFE Movement Observed in Camera
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Related Research
p Recent works highlight the potential of machine learning methods in these tasks. (Table 1)
p Some studies combine multiple tasks into a unified model/framework (multi-task model/framework),  

enhancing performance, interpretability, and disruption avoidance[6].
p However, EAST lacks such multi-task models/framework, and developing a high-performance, easily 

transferable multi-task model with limited expert annotations remains a significant challenge.

Tasks Methods and Research Content Device Best Performance References

Disruption
Prediction

A review on disruption prediction with 
artificial intelligence techniques - - J. Vega, et al. Nature Phys. 18, 741-750(2022)

CNN+Attention+MMD: Model trained on EAST 
carbon wall database,then transferred to 
metal wall database.

EAST AUC: 0.97/0.93 [10] Guo B H, et al. 2023 Nucl.Fusion 63 094001

Instability
detection

Random Forest: Prediction of MARFE-
movement EAST ACC 85%–90% Hu W H, et al. Chin. Phys. B 32, 075211 (2023)

TCNN+LSTM: Identification of MHD EAST ACC: 98.38% Lingyi Kong et al 2024 PlasmaPhys.Control.Fusion 66 
015016

Confinement 
Mode

identification

MLP: identification of H/I/L mode EAST ACC: 96.03% [5] K.N. Yang,et al. Nucl. Fusion 64 (2024) 016035 (11pp)

CNN: Real-time identification of H/L mode DⅢ-D ACC: 98% David Orozco, et al. IEEE TPS, VOL.50, NO.11, 2022

Attention+LSTM: identification of H/L mode TCV κ-statistic: 0.94 F.Matos,et al. Nucl. Fusion 61 (2021) 046019 (11pp)

Multiple 
tasks 

integrated
Multi-task learning: detect various instability 
events and simultaneously predict disruptions. DⅢ-D AUC: 0.94 [6] Zhu J X, et al. Nucl. Fusion 63 (2023) 046009 (14pp)

Table 1: Current State of Related Research
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Our work
p We developed a multi-task model that can handle disruption prediction, macro-instability event 

detection (ELMs and MARFE Movement), and confinement mode Identification (H/I/L mode or only 
ohmic heating) at the same time.

p In EAST carbon wall database, Our multi-task model achieved state-of-the-art (SOTA) performance in 
disruption prediction and ELMs detection tasks, and showed performance improvements in other tasks 
compared to single-task models.

p As shown in Fig.2, Our model's input includes the current time and a 100ms data window before it. The 
output is the result of various tasks at the current time. All signals are from the Plasma Control System 
(PCS) with a sampling rate of 1 kHz, making the model suitable for real-time applications.

Figure 2. Examples of Partial Input and Output of the Multi-Task Model
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Data source
p Extensive expert annotations were conducted on 9,756 shots from the EAST database during the 

period from 2015 to 2019. Some of the expert annotations have already been used in previous 
research [5,6,8,9].

p To facilitate comparison with the recorded results on EAST [10], the disruption database shots are 
divided into four sets based on Bihao Guo's research (Table 3).

Table 3: Expert annotations (Expert list: Hu Wenhui, Guo Bihao, Yang Qinquan, Lin Xin, Liu Adi, Hou Jilei)
Annotation Training Set (Time unit /s) Validation Set (Time unit /s) Carbon Wall Test Set (Time/s) Metal Wall Test Set (Time/s)

Disruption_label Shots Number:6516
Pos Time:199.3,Neg Time:31425.3

Shots Number:1399 
Pos Time:43.1,Neg Time:6834.73

Shots Number:1234
Pos Time:43.7,Neg Time:5697.97 

Shots Number:297 
Pos Time:8.0,Neg Time:1628.52 

ELM_label Shots Number:130 
Pos Time:401.94,Neg Time:517.81

Shots Number:29 
Pos Time:63.08,Neg Time:136.69 

Shots Number:31 
Pos Time:70.01,Neg Time:154.4 

Shots Number:133 
Pos Time:531.5,Neg 
Time:682.86 

MARFEmove_label Shots Number:21 
Pos Time:7.61,Neg Time:56.8, 

Shots Number:5 
Pos Time:4.48,Neg Time:10.9

Shots Number:6 
Pos Time:3.68,Neg Time:13.86 

Shots Number:49 
Pos Time:24.62,Neg Time:370.8 

H_Mode_label Shots Number:84 
Pos Time:422.37,Neg Time:0.0, 

Shots Number:15 
Pos Time:71.69,Neg Time:0.0

Shots Number:16 
Pos Time:74.07,Neg Time:0.0 

Shots Number:101 
Pos Time:532.2,Neg Time:0.0

I_Mode_label Shots Number:53 
Pos Time:80.6,Neg Time:0.0, 

Shots Number:17 
Pos Time:24.44,Neg Time:0.0

Shots Number:21 
Pos Time:31.94,Neg Time:0.0 

Shots Number:19 
Pos Time:39.74,Neg Time:0.0

L_Mode_label Shots Number:46 
Pos Time:80.4,Neg Time:0.0, 

Shots Number:10 
Pos Time:26.82,Neg Time:0.0

Shots Number:19
 Pos Time:38.48,Neg Time:0.0 

Shots Number:10 
Pos Time:101.1,Neg Time:0.45

OHM_Mode_label Shots Number:26 
Pos Time:131.06,Neg Time:0.0,

Shots Number:10 
Pos Time:43.57,Neg Time:0.0

Shots Number:10 
Pos Time:52.77,Neg Time:0.0

Shots Number:21 
Pos Time:107.72,Neg Time:0.0 
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 Input Signal
p Selection Principles of input signal: a) based on prior physical knowledge and previous papers[3-9]; b) 

capability in PCS; c) minimal signal quantity to avoid the "curse of dimensionality".
p Utilizing Short-Time Fourier Transform (STFT) on Da signals to extract time-frequency information for 

feature enhancement.

Symbol Signal description Symbol Signal description

p_RAD Radiated power rad_input_frac
�������� �����

����� �����

DaL1 Deuterium Balmer-α line emission 
spectrum (lower first channel) DaU2 Deuterium Balmer-α line emission spectrum 

(upper second channel)
ne Electron density Z_cur_lmsz Linearly estimated vertical displacement
ip Plasma current pxuv32 Bolometric radiation measurement
Wmhd Plasma stored energy p_LH Lower hybrid heating power
v_loop Loop voltage kappa Elongation ratio

ip_error_normalized
������ ������� − ��������� ������

������� ��������� ������ Greenwald_fraction
�������� �������

��������� �������

q95 Safety factor at the 95% flux surface ne_error density − current programed plasma 
density

STFT_DaU2_50-100Hz STFT of DaU2 in the 50-100 Hz range STFT_DaL1_50-100Hz STFT of DaU2 in the 50-100 Hz range
STFT_DaU2_100-150Hz STFT of DaU2 in the 100-150 Hz range STFT_DaL1_100-150Hz STFT of DaL1 in the 100-150 Hz range
STFT_DaU2_150-200Hz STFT of DaU2 in the 150-200 Hz range STFT_DaL1_150-200Hz STFT of DaL1 in the 150-200 Hz range

Table 3：Signal Selection

[7] Kim, S.K., Shousha, R., Yang, S.M. et al. Highest fusion performance without harmful edge energy bursts in tokamak. Nat Commun 15, 3990 (2024). 
[8] Hu, Wenhui, et al. “Prediction of Multifaceted Asymmetric Radiation from the Edge Movement in Density-Limit Disruptive Plasmas on Experimental Advanced Superconducting 
Tokamak Using Random Forest.” Chinese Physics B, vol. 32, no. 7, July 2023, p. 075211. Institute of Physics, 
[9] W.H. Hu, et al. “Real-Time Prediction of High-Density EAST Disruptions Using Random Forest.” Nuclear Fusion, vol. 61, no. 6, June 2021, p. 066034.
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 Our Model Structure
p The model has a feature extractor and several task classifiers. The feature extractor is a multi-scale 

convolutional network[6], and the task classifiers are linear fully connected neural networks.
p Model input: current time and preceding 100ms window (22*100 data points).To enhance 

performance, attempt to construct cascade relationships between task classifiers. 
p All hyperparameters for each model are obtained using a genetic algorithm on the validation set.
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Figure 3.  (Left) Parallel configuration of task classifiers;  (Right) Cascade configuration of task classifiers.
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Best disruption prediction: multi-task cascade model

Figure 4: (Left) Single-task model;  (Middle) Multi-task parallel model; (Right) Multi-task cascade model.

p For the disruption prediction task, the multi-task model significantly outperforms the single-task model 
in terms of prediction accuracy and provides earlier warnings. 

p Additionally, the performance of the multi-task cascade model is slightly superior to that of the multi-
task parallel model, representing the highest performance on EAST carbon wall database.

This ROC curve shows 
the True Positive Rate vs. 
False Positive Rate for 
different thresholds. The 
r e d  l i n e  i n d i c a t e s 
random guessing (AUC 
=  0 . 5 ) .  H i g h e r  A U C 
m e a n s  b e t t e r 
performance.

The x -ax i s  shows  the 
l e a d  t i m e  b e f o r e 
disruption (warning time), 
and the y-axis shows the 
fraction of disruptions 
detected by that time.

AUC=0.9567 AUC=0.9766 AUC=0.9773
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Best instability detection: multi-task cascade model

Figure 5: (Left) Single-task model;  (Middle) Multi-task parallel model; (Right) Multi-task cascade model.

p The performance of instability detection tasks in cascade networks surpasses that of parallel 
networks, which in turn exceeds the performance of single-task models.

p The ELM detection AUC is 0.991, the best performance so far on EAST carbon wall database.
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Correlation between instability detection and disruption prediction

ELMs

MARFE-Move

 DIS warning

p Through multi-task joint learning, it was observed that instability detection tasks impact disruption 
prediction, enhancing both interpretability and performance of the predictions.

p The detection score of ELMs is negatively correlated with disruption risk, while the detection score of 
MARFE movement is positively correlated with disruption risk. This implies the presence of ELMs 
decrease disruption risk, while MARFE movement increases it, matching experimental experience.

Figure 6. Instability detection and disruption prediction impact each other (EAST Test Shot: 70611)
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Best Confinement Mode Identification: multi-task parallel model

Figure 7: (Left) Single-task model;  (Middle) Multi-task parallel model; (Right) Multi-task cascade model.

ACC 90.61% ACC 91.48%

p For confinement mode identification, the model outputs the class with the highest score directly. 
Therefore, model performance can be directly measured by the ACC from the confusion matrix.

p The optimal model is the parallel model, achieving an ACC 91.48%, which is below the performance 
reported in the literature[5]. However, ours does differs from theirs not not require high-frequency 
signals to detect WCM, making it better suited for the real-time operational characteristics of PCS.

ACC 91.06%
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Confinement Mode Transition Identification 

p The model can dynamically 
identify H-mode, L-mode, I-
mode, or only ohmic heating. 
It can also indirectly identify 
t h e  t r a n s i t i o n s  b e t w e e n 
different confinement modes.

p However, the accuracy of 
t r a n s i t i o n  i d e n t i f i c a t i o n 
(Specific time of transition) 
needs improvement.
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Figure 8. Confinement mode identification (EAST Test Shot: 77572)
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Enhancing Transition and Cross-Wall Performance

p To enhance the performance in identifying the 
specific time of transition, a specialized transition 
ident i f icat ion task i s  added based on the 
confinement mode recognition.

p To address the issue of performance degradation 
across walls[10], a domain adversarial task is 
added.
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Figure 9. performance declines when working across walls[10] Figure 10. Future model structure 
[10] Guo, B. H., et al. Nuclear Fusion, vol. 63, no. 9, July 2023, p. 094001. Institute of Physics,
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