
|

UK Atomic Energy

Authority

Using Continuous Integration in the
development and verification of a
new central controller for JET
Edward Jones – Control Software Engineer

Advanced Controls Unit – Advanced Computing Division

|

- Problem Statement

- Scope of Work

- Workflows

- Solution

- Outcome

Agenda

|

New requirement for final campaigns of JET:

- Detect the X point in real time and control it’s location.

Current control system roadblocks:

- Difficult to implement new functions

- Difficult to configure – no actual GUI for blocks

- Difficult upgrade and authorisation to upgrade process.

- Outdated source code control

- Limited software testing

- Maximum of 200 functions across 4 sequentially

 running threads.

- Difficult to visualise the algorithms.

JET Real Time Central Controller

Upgrade

|

For our project, given it was the direct plasma control mechanism, we needed:

- A way to define a control algorithm per pulse/campaign/week

- To protect our controller from inadvertent tampering

- React in real-time (2ms)

- Provide users with the ability to test control algorithms in safe environments

- Validate our upgrades

Scope of Work

|

Offline Testing

User workflow

Online Operations

Recorded JET Data

Simulation Server Plant Server

RTCC1/2

Data Store

|

The GUI Itself

|

Workflow

RTCC1

configs

RTCC1/2

Converter
MARTe2

MARTe2-

components

RTCC2-

components

Time-series

Data

RTCC1

Time-series

Data

RTCC1/2

Level1

Key:

❑ - Python

❑ - C++

❑ - C

❑ - Config

Files

|

Code stack

MARTe2

MARTe2-Components RTCC2-Components

GUI

MARTe2 Python

RTCC1/2 Converter

Init Reader

RTCC2 Plugin

Simulation ServerData Server Plant Server

Key:

❑ - Python

❑ - C++

❑ - C

❑ - Config

Files

|

Software Development Workflow

Feature/Bug

Requested

Developer

Assigned

Develop

Changes

Create/modify

tests

New release

Made

Deploy new

release

Gate 1:

Is it a bug/feature?

Is it worth it? Gate 2:

Is there a test for this?

Has it been properly fixed?

Has it been properly tested?

Gate 3:

Will this interrupt operations?

|

Risk Mitigation:

- Not meeting project deadline

- Not meeting essential project requirements

- Reputation

- Operating outside safe conditions

- Late discovery of issues

- Bad user experience

Why – Software Testing

|

For any software, it must run on hardware
but we found new challenges:

- CentOS 7 is outdated

- Real time setup is a 27pg complex
document.

- Updating software is difficult

- Differing versions across machines and
setups

- Requires advanced Linux users

- Time consuming process

- No reproducibility

- Hosting through NFS network booting*

Deployment

MARTe2 Application

Real Time Linux

Hardware

NFS Network

Boot System

|

Solution - Yocto

- Version control and hostable on Gitlab

- Build through Gitlab pipelines with a
specific runner

- Automated build at code push

- No engineer required for the build
process*

- Automated production of packages
and package management system

- Modifiable boot procedures

|

- Driver Setup and Installation

- Boot mechanism*

- Building to test against

Caveats

|

- Compilation and Gtesting of MARTe2 components.

- Conversion of existing RTCC1 pulse configurations:

 - Within a basic linux docker image of ubuntu:20.04

 - Within a docker image generated from Yocto on a real time system.

 - On mimic hardware we had in our lab which used a cross between a RAM
and NFS root file system to maintain real-timeness.

* Regression testing against RTCC1 pulse data.

- Pytests for the GUI itself and user interactions/stories.

What – The tests we ran

|

It’s all well and good constructing this grand plan, the execution however is what
you really need.

Some things are already well documented:

- Creating Gtests

- Creating pytests

- Creating pytests for a pyqt based GUI

Some things not so well documented, or at all:

- Loading a system image from NFS into RAM

- Deploying a yocto image from a pipeline to then perform tests on

- Creating a docker image from a yocto image (for automated or manual testing).

How – the difficult part

|

What we came up with:

Deployed testing

Note: The server is running on a isolated

network which replicates the traffic expected

on the ITER online network (SDN). The

Raspberry pi had a second ethernet interface

for communicating to the runner.

SiL Type Testing

HiL Type Testing

|

Gitlab Pipelines

|

- Identified difficult to see errors/issues in calculations during tests.

- Identifies introduced bugs after codebase changes.

- Provided developers with a confident mechanism of proving their work and
performing merge reviews.

- Provided our stakeholders and user base with confident measurements of the
project process as well as what was possible at each stage.

- Ultimately we had a faster time to market, we were able to deliver the project on
time for the experiment with a great level of confidence.

- We were able to adapt faster to new projects that came up afterwards and re-use
a large bulk of our work.

Outcomes

|

The JET experiment: https://www.youtube.com/watch?v=1Zsv4JzogTE

Boot setup: https://www.youtube.com/playlist?list=PL-
EYJCXIWZxBSuFbO2h9GgF-tcbrOotnV

Automating Yocto Processes: https://www.youtube.com/playlist?list=PL-
EYJCXIWZxBdzbMRbtXcBG9QodMcCkBb

Useful links

https://www.youtube.com/watch?v=1Zsv4JzogTE
https://www.youtube.com/playlist?list=PL-EYJCXIWZxBSuFbO2h9GgF-tcbrOotnV
https://www.youtube.com/playlist?list=PL-EYJCXIWZxBSuFbO2h9GgF-tcbrOotnV
https://www.youtube.com/playlist?list=PL-EYJCXIWZxBdzbMRbtXcBG9QodMcCkBb
https://www.youtube.com/playlist?list=PL-EYJCXIWZxBdzbMRbtXcBG9QodMcCkBb

||

Thank you for your time today
I’ll be available for questions in the poster hall tomorrow.

	Slide 1: UK Atomic Energy Authority
	Slide 2: Agenda
	Slide 3: JET Real Time Central Controller Upgrade
	Slide 4: Scope of Work
	Slide 5: User workflow
	Slide 6: The GUI Itself
	Slide 7: Workflow
	Slide 8: Code stack
	Slide 9: Software Development Workflow
	Slide 10: Why – Software Testing
	Slide 11: Deployment
	Slide 12: Solution - Yocto
	Slide 13: Caveats
	Slide 14: What – The tests we ran
	Slide 15: How – the difficult part
	Slide 16: What we came up with: Deployed testing
	Slide 17: Gitlab Pipelines
	Slide 18: Outcomes
	Slide 19: Useful links
	Slide 20: Thank you for your time today

