

Reconstruction of plasma equilibrium using physics-informed neural network on EAST

Wenbin Liao^{1,2*}, Zhengping Luo^{1*}, Yao Huang^{1,3}, Yuehang Wang¹, Kai Wu¹, Zijie Liu³, Bingjia Xiao^{1,2,3}

¹ Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences

² University of Science and Technology of China

³ Institute of Energy, Hefei Comprehensive National Science Center

*Email: wenbin.liao@ipp.ac.cn & zhpluo@ipp.ac.cn

Plasma Equilibrium Reconstruction

Equilibrium Reconstruction – Solving Grad-Shafranov equation

G-S equation:
$$R \frac{\partial}{\partial R} \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial Z^2} = -\mu_0 R^2 \frac{d}{d\psi} p - F \frac{d}{d\psi} F$$

□ Known:

External diagnostics, e.g., plasma current lp, magnetic probes, flux loops, etc. Internal diagnostics, e.g., **MSE**, **POINT**;

□ Solving:

 $\psi(R,Z)$ that satisfies the G-S equation on the domain Ω_c .

EFIT:

 $\begin{array}{c} \square \text{ Distributed current model:} & \frac{p'(\psi) = \sum_{n} \alpha_{n} \psi_{N}^{n}}{F(\psi)F'(\psi) = \sum_{n} \gamma_{n} \psi_{N}^{n}} & (\text{H-mode}) & \longrightarrow \text{ Difficult for complex form} \\ \square \text{ Picard iterations:} & C_{j}^{(m+1)}(r_{j}, z_{j}) = \sum_{n=1}^{n_{PF}} G_{cD_{j}}(r_{j}, z_{j}, r_{n}, z_{n}) I_{n}^{(m+1)} + \int_{\Omega^{(m)}} dR dZ G_{pD_{j}}(r_{j}, z_{j}, R', Z') J_{\varphi}(R', Z', \psi^{(m)}, \vec{\alpha}^{(m+1)}, \vec{\gamma}^{(m+1)}) \\ \square \text{ Least squares fitting:} & \chi^{2} = \sum_{n=1}^{n_{M}} \left(\frac{M_{j} - Cj}{\sigma_{j}} \right)^{2} & \text{ Difficult to add new diagnostics} \end{array}$

Physics-Informed Neural Network (PINN)

The basic structure of PINN

	Traditional numerical methods	PINN
Model building	$p'(\psi) = \sum_{n} \alpha_{n} \psi_{N}^{n}$ $F(\psi)F'(\psi) = \sum_{n} \gamma_{n} \psi_{N}^{n}$	$p'(\psi) = NN_1(\psi)$ $F(\psi)F'(\psi) = NN_2(\psi)$
New diagnostics	New response matrix, new model assumptions, etc.	New boundary conditions
Applicability to complex problems	Difficult	Easy

• PINN can be used for plasma equilibrium reconstruction.

Reconstruction by PINN on JET

- Optimizer: Adam
 - Boundary Conditions Losses:
 - Pick-up coils
 - Flux loops
 - Saddle coils
 - Pressure on the wall

Reconstruction by PINN on JET

- $\checkmark\,$ Relative error of $\psi_N < 5\%$
- \checkmark Measurements and predictions in good agreement
- Unreasonable assumptions of external current distribution
- Conflation of plasma boundary and limiter
- Great error

PINN Structure for reconstruction on EAST (I_{PF} known)

Loss Functions (I_{PF} known)

 $\mathcal{L} = w_{p,inside} \mathcal{L}_{p,inside} + w_{p,outside} \mathcal{L}_{p,outside} + w_{b,MP} \mathcal{L}_{b,MP} + w_{b,FL} \mathcal{L}_{b,FL} + w_{p',p,LCFS} \mathcal{L}_{p',p,LCFS} + w_{ip} \mathcal{L}_{ip} + w_{b,MPG} \mathcal{L}_{b,MPG} + w_{b,FLG} \mathcal{L}_{b,FLG} + w_{p,max} (\mathcal{L}_{p,insidemax} + \mathcal{L}_{p,outsidemax})$

Inside the LCFS:
$$\mathcal{L}_{p,inside} = \frac{1}{M_p} \sum_{i_p = 1}^{N_p} \left[\left(\frac{\partial^2 \psi}{\partial R^2} - \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial Z^2} + \mu_0 R^2 \frac{dp}{d\psi} + \frac{1}{2} \frac{dp}{d\psi} \right)^2 \right]_{(k_1 p, Z_1 p)_{inside}} \mathcal{L}_{p,insidemax} \rightarrow \text{top max 5% } \mathcal{L}_{p,inside}$$

$$\text{Outside the LCFS: } \mathcal{L}_{p,putside} = \frac{1}{M_p} \sum_{i_p = 1}^{M_p} \left[\left(\frac{\partial^2 \psi}{\partial R^2} - \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial Z^2} \right)^2 \right]_{(k_1 p, Z_1 p)_{inside}} \mathcal{L}_{p,outsidemax} \rightarrow \text{top max 5% } \mathcal{L}_{p,outside}$$

$$p' \text{ on the LCFS: } \mathcal{L}_{p',pLCFS} = \frac{1}{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \left[\left(R_{i_{p,LCFY}} Z_{i_{p,LCFY}} \right)^2 \right] \right]_{(k_1 p, Z_1 p)_{inside}}$$

$$p' \text{ on the LCFS: } \mathcal{L}_{p',pLCFS} = \frac{1}{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \left[\left(R_{i_{p,LCFY}} Z_{i_{p,LCFY}} \right) \right]^2$$

$$p' \text{ on the LCFS: } \mathcal{L}_{p',pLCFS} = \frac{1}{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \left[R_{p,i_{p,LCFY}} Z_{i_{p,LCFY}} \right]^2$$

$$p' \text{ on the LCFS: } \mathcal{L}_{p',pLCFS} = \frac{1}{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \sum_{i_{p,LCFS} = 1}^{M_{p,LCFS}} \left[\frac{R_{p,i_{p,LCFY}} Z_{i_{p,LCFY}} }{(R_{p,i_{p,LCFY}} Z_{i_{p,LCFY}} \right]^2$$

$$p \text{ Physics loss}$$

$$Magnetic probes: \mathcal{L}_{b,MP} = \frac{1}{M_{b,MP}} \sum_{i_{b,MP=1}}^{M_{b,MP}} \frac{(B_{p,i_{p,MP}} Z_{i_{b,MP}}) \cos(\theta_{i_{b,MP}}) + B_{Z_{p,i_{p,MP}}} (R_{i_{b,MP}} Z_{i_{b,MP}}) B_{p_{i_{D,MP}}} B_{p_{i_{D,MP}}} B_{i_{b,MP}} - C_{i_{b,G}} d_{ext}$$

$$\mathcal{L}_{b,MPG} = \frac{1}{M_{b,MP}} \sum_{i_{b,MP=1}}^{M_{b,MP}} \frac{(B_{p,i_{D,MP}} Z_{i_{b,MP}})}{(G_{i_{b,MP}})^2}$$

$$\mathcal{L}_{b,FLG} = \frac{1}{M_{b,FL}} \sum_{i_{b,FL} = 1}^{M_{b,FL}} \frac{(G_{FL} P_{prissma_{i_{b,MP}}})}{(G_{i_{b,PL}})^2}$$

$$\psi_{plasma_{i_{b,FL}}} = \psi_{total_{i_{b,FL}}} - G_{i_{d,G}} d_{ext}$$

$$\mathcal{L}_{i_{p}} = \left(\sum_{i_{p} = 1}^{M_{p}} R_{i_{p}} R_{i_{p}} B_{prissma_{i_{p}}} \right)^2$$

$$Poly = C_{i_{p}} R_{i_{p}} R_{i_{p}} B_{prissma_{i_{p}}} + \frac{1}{(G_{i_{p}} R_{i_{p}})} B_{i_{p}} R_{i_{p}} B_{i_{p}} + \frac{1}{(G_{i_{p}} R_{i_{p}})$$

Algorithm and weights

 $\mathcal{L} = w_{p,inside} \mathcal{L}_{p,inside} + w_{p,outside} \mathcal{L}_{p,outside} + w_{b,MP} \mathcal{L}_{b,MP} + w_{b,FL} \mathcal{L}_{b,FL} + w_{p',p,LCFS} \mathcal{L}_{p',p,LCFS} + w_{ff',p,LCFS} + w_{ip} \mathcal{L}_{ip} + w_{b,MPG} \mathcal{L}_{b,MPG} + w_{b,FLG} \mathcal{L}_{b,FLG} + w_{p,max} (\mathcal{L}_{p,insidemax} + \mathcal{L}_{p,outsidemax})$

Optimizer: Adam, LBFGS

	Adam	LBFGS(below 3500 iterations)	LBFGS(above 3500 iterations)
W _{p,inside}	1	10	10
W _{p,outside}	1	10	10
W _{b,MP}	1	1	1
W _{b,FL}	1	1	1
W _{b,MPG}	1	10	10
W _{b,FLG}	1	10	10
Wp',p,LCFS	1	10	10
W _{ff} ',p, LCFS	0.5	5	5
W _{ip}	0.5	1	1
W _{p.max}	0	1	10

□ Stop conditions:

- > LCFS unchanged between two LBFGS optimization phase
- > More than 50,000 iterations

LCFS Convergence Process

LCFS gradually converges during the optimization process

Convergence of diagnostics

- \checkmark Maximum relative error 0.22% on flux loops
- \checkmark Maximum relative error 0.26% on magnetic probes

Convergence of physics loss

✓ an absolute error below 0.06 in LCFS and below 0.1 outside LCFS
 □ convergence is still not enough for equilibrium reconstruction

Reconstruction Results

simulated equilibrium reconstruction results \checkmark a relative flux error below 0.1%

Reconstruction Results(3% relative diagnostics error)

simulated equilibrium reconstruction results (with diagnostics error)

PINN Structure for reconstruction on EAST (I_{PF} unknown)

Reconstruction Results

simulated equilibrium reconstruction results

- $\checkmark\,$ a relative error below 0.5% of flux
- \checkmark a relative error below 3% of external currents

much harder to converge due to the complexity of the loss function

- Develop a PINN structure for equilibrium reconstruction with external current known/unknown
- Design an algorithm, including optimizers and weights adjustment for loss functions
- \checkmark The results are all consistent with EFIT, proving its high reliability
- Reconstruction of equilibrium including external currents with relative error added on diagnostics
- Reconstruction of different plasma shapes and complex current distribution form
- Fast equilibrium reconstruction

