Transport barriers in the drift wave model

Souza, L. F. B.¹ Egydio de Carvalho, R.² Caldas, I. L.¹

¹University of São Paulo, São Paulo, SP, Brazil ²São Paulo State University, Rio Claro, SP, Brazil

Drift wave model

The drift wave model assumes that the motion of confined plasma particles is influenced by the drift $\mathbf{E} \times \mathbf{B}$, in which the electric field has a fluctuating component referring to the electrostatic fluctuations defined as:

$$\tilde{\phi}(\mathbf{x},t) = \sum_{m,l,n} \phi_{m,l} \cos(m\vartheta - l\varphi - n\omega_0 t).$$
(1)

Assuming two dominant spatial modes, (M, L) and (M + 1, L), the resultant map can be described as follows

Particle escape time

Plasma Profiles

Figure 1. Plasma profiles used. In (a) Equilibrium electric field, (b) parallel velocity and (c) safety factor

Shearless transport barrier

The extremum point in the winding number profile $\Omega(I)$ identifies a condition of the shearless barrier.

Figure 3. Particle escape. As the perturbation increases, the faster the particles escape.

Transmissivity parameter spaces

$$\Omega = \lim_{n \to \infty} \frac{\chi_{n+1} - \chi_0}{n}$$

Figure 2. Phase spaces, (a) in red the shearless barrier and (b) Stickness (Partial barrier).

Main references

[1] W. Horton, H. B. Park, J. M. Kwon, D. Strozzi, P. J. Morrison, and D. I. Choi, "Drift wave test particle

Figure 4. Transmissivity, the fraction of escaping orbits. In the black regions, there is a total barrier.

- transport in reversed shear profile," *Physics of Plasmas*, vol. 5, no. 11, p. 3910, 1998.
- [2] I. L. Caldas, R. L. Viana, C. V. Abud, J. D. da Fonseca, Z. O. Guimarães Filho, T. Kroetz, and et al., "Shearless transport barriers in magnetically confined plasmas," *Plasma Physics and Controlled Fusion*, vol. 54, no. 12, p. 124035, 2012.
- [3] L. A. Osorio, M. Roberto, I. L. Caldas, R. L. Viana, and Y. Elskens, "Onset of internal transport barriers in tokamaks," *Physics of Plasmas*, vol. 28, no. 8, p. 082305, 2021.
- [4] L. F. B. Souza, I. L. Caldas, and R. Egydio de Carvalho, "Transport barriers for two modes drift wave map," *Physics Letters A*, vol. 444, p. 128237, 2022.

Figure 5. Transmissivity, the fraction of escaping orbits. In the black regions, there is a total barrier.

Conclusions

- For non-monotonic profile of $\mathbf{E}(I)$, the system exhibits Shearless transport barrier
- Adding other perturbative modes increases the degree of freedom
- The perturbation modes destroy the shearless barrier
- the remnants of the shearless barrier, act as partial barriers

https://web.if.usp.br/controle/

São Paulo, 2024

luisfernando.bernardi1998@gmail.com