ONSET OF MULTIPLE TRANSPORT BARRIERS IN TOKAMAK CONFIGURATIONS Gabriel C. Grime¹, Marisa Roberto², Ricardo L. Viana^{1,3}, Yves Elskens⁴, Iberê L. Caldas¹ ¹Institute of Physics, University of São Paulo, Brazil ²Physics Department, Aeronautical Institute of Technology, Brazil ³Physics Department, Federal University of Paraná, Brazil

⁴Aix-Marseille Université, CNRS, UMR 7345 PIIM, France

Objective

Investigate the formation of multiple transport barriers in tokamak plasmas due to modifications in magnetic profile

Shearless Transport Barriers

• Shearless curves at minimum profiles prevent chaotic transport (1)

Experimental Evidences of STB

- Electrostatic perturbations at plasma edge cause $\mathbf{E} \times \mathbf{B}$ turbulent transport
- Nonmonotonic profiles improve confinement (2).

Horton's Particle Transport Model

Horton Model: a test particle subject to plasma fields (3).

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = v_{||}\frac{\mathbf{B}}{B} + \frac{\mathbf{E} \times \mathbf{B}}{B^2} \qquad \mathbf{\cdot} \mathbf{E} = \overline{\mathbf{E}_{\mathbf{r}}} - \nabla\tilde{\phi}$$

$$\mathbf{\cdot} \tilde{\phi}(\mathbf{x}, t) = \sum_{n} \phi_{n} \cos\left(M\theta - L\varphi - n\omega_{0}t + \alpha_{n}\right)$$

Action $(I = r^{2}/a^{2})$ and angle $(\psi = M\theta - L\varphi)$ variables

$$\frac{\mathrm{d}I}{\mathrm{d}t} = 2M \sum \phi_{n} \sin(\psi - n\omega_{0}t + \alpha_{n})$$

0.52 -0.40.40.30.3____

Plasma Configuration

Conclusions

- Nonmonotonic profiles produce STB
- Shearless curve break up/onset changing profile.
- Multiple shearless curves for some parameters (4)

1. I. L. Caldas et al., Plasma Phys. Control. Fusion 54, 124035 (2012). 2. D del-Castillo-Negrete, Phys. Plasmas 7, 1702 (2000). 3. W Horton et al., Phys. Plasmas 5, 3910 (1998). 4. G. C. Grime et al., J. Plasma Phys. 89, 835890101 (2023).

Scan Me

