DE LA RECHERCHE À L'INDUSTRIE

Nuclear data feedback on structural, moderating and absorbing materials through the MAESTRO experimental programme in MINERVE

JEF/DOC-1849

DEN/DER/SPRC/LEPh | Pierre Leconte

www.cea.fr

April 26, 2017.

OUTLINE

Context

- Description of the Experiments
- Calculations methods and models
- Analysis of spectral characteristization experiments
- Analysis of neutron activation experiments
- Analysis of pile-oscillation experiments
- Conclusions and further works

Several experimental programmes have been designed to validate ND for LWR applications:

- Burn-Up Credit programme (1992-2000) on 13 of the most absorbing FP: ^{147,149,152}Sm, ^{143,145}Nd, ¹⁵⁵Gd, ¹⁵³Eu, ⁹⁹Tc, ¹³³Cs, ¹⁰⁹Ag, ¹⁰¹Ru, ⁹⁵Mo, ¹⁰³Rh
- OSMOSE programme (2005-2010) on 13 of the most absorbing actinides: ²³²Th, ^{233,234,236,238}U, ^{238,239,240,241,242}Pu, ^{241,243}Am, ^{244,245}Cm
- OCEAN programme (2005-2010) on 16 separated isotopes of absorbers: ^{155,157}Gd, ^{177,178,179,180}Hf, ^{160,161,162,164}Dy, ^{166,167,168,170}Er, ^{151,153}Eu
- HTC programme (2004-2011) on higly irradiated MOX fuels (60GWd/t) and UOx fuels (80GWd/t)

A lack of validation remaining for:

- Structural materials: zircaloy, Inconel, stainless steel...
- Moderator materials: *light and heavy water, carbon, berylium...*
- Detection materials (GEN-III+): cobalt, vanadium, rhodium...
- Absorbing materials: Ag, In, Cd, natural Dy, Er, Eu, Gd, Hf

OUTLINE

Context

- Description of the Experiments
- Calculations methods and models
- Analysis of spectral characteristization experiments
- Analysis of neutron activation experiments
- Analysis of pile-oscillation experiments
- Conclusions and further works

DESCRIPTION OF THE EXPERIMENTS General purpose

- Main goals:
 - Validation of the capture cross sections for structural, dectection and absorbing materials for GEN-III+ applications
 - Validation of the scattering reactivity worth of moderators

Materials to be considered:

- Moderator elements:
- **—** Structural elements:
- Detection elements:
- Absorber elements:
- Industrial alloys:

H₂O, ^{nat}Be, ^{nat}C, CH₂ ^{nat}Mg, ^{nat}Al, ^{nat}Cl, ^{nat}Ca, ^{nat}Ti, ^{nat}Cr, ^{nat}Fe, ^{nat}Ni, ^{nat}Cu, ^{nat}Zn, ^{nat}Zr, ^{nat}Mo, ^{nat}Sn ^{nat}V, ^{nat}Mn, ^{nat}Co, ^{nat}Nb, ^{nat}Rh ^{nat}Ag, ^{nat}In, ^{nat}Cd ^{nat}Eu, ^{nat}Gd, ^{nat}Dy, ^{nat}Er, ^{nat}Hf ¹⁵³Eu, ¹⁰⁷Ag, ^{nat}Cs Zy4, M5, SS304, SS316, Inconel-800

Measurements to be performed:

- Pile-oscillation experiments on the 48 samples
- Activation experiments on a set of 10 samples

DESCRIPTION OF THE EXPERIMENTS MINERVE core configurations

MAESTRO PHASE I (2011)

- R1UO2 core configuration
- Pile-oscillation of Rh, Co, Mn, V, Au rods + B, Li, Gd solutions
- Neutron activation of Co and Mn
- 与 See JEF/DOC-1486

MAESTRO Phase II (2012-2013)

- MAESTRO core configuration
- Neutron activation of ¹⁰⁹Ag, ¹³³Cs, ⁵¹V, ¹¹⁵In, ^{151,153}Eu, ^{64,68}Zn, ^{94,96}Zr, ^{98,100}Mo, ^{112,117,122}Sn, ¹⁹⁷Au
- See WONDER2015 proceedings (EPJ-Web of Conference)

MAESTRO Phase III (2013-2014)

- MAESTRO core configuration
- Spectral indices, dosimetry, cadmium ratio, CU8/Ftot
- Pile-oscillation of Au, B, Li, Ag, Cd, Cl, Ca, V, Co, Cr, Cs, Dy, Er, Eu, Gd, In, Mn, D₂O, H₂O, Be, CH₂, Cu, Fe, Mo, Nb, Ni, Ti , Zn, V, Al₂O₃, Al, C, Mg, Si, Sn, Inconel-718, SS304, SS316, Al-5754, M5[™], Zy4

MAESTRO Phase IV (2016)

- MAESTRO-SL core configuration
- Pile-oscillation of Hf, ¹⁰⁷Ag, Rh and ¹⁵³Eu

- Pure rods: Fe, Cr, Ni, Sn, Zn...
- Liquid solutions: Eu, Cs, In, Gd...
- Powder mix with Al₂O₃ diluant: Hf, Rh, ¹⁵³Eu, ¹⁰⁷Ag
- ⇒ Typical external dimensions: diameter 1.2cm / length 10cm

Calibration samples

- Pure rods of gold (99.995%) of various diameters : 1.0, 1.6 and 2.0mm
- Al-0.1%Au alloy wire
- 8 calibrated solutions
 - 350 ppm to 1400 ppm $^{\rm 10}{\rm B}$
 - 820 to 3280 ppm of ⁶Li

Reference (dummy) samples to cancel the reactivity worth due to cladding and/or matrix:

- Void sample for rod-type samples
- Al2O3-only samples for powder-type samples
- Pure water samples for liquid-type

Physical characteristics carefully checked:

- Mass certificate of the dopant at <0.5% (1s)</p>
- Accurate metrology of the dimensions (±10μm) and mass (±0.1mg)
- Reactive impurities

OUTLINE

- Context
- Description of the Experiments
- Calculations methods and models
- Analysis of spectral characteristization experiments
- Analysis of neutron activation experiments
- Analysis of pile-oscillation experiments
- Conclusions and further works

CALCULATION METHODS AND MODELS TRIPOLI model of the MINERVE core

3D detailed full core model

/			Graph	ite reflector			
Central channel for activation and pile oscillation	Driver zone made of HEU						
	Tes ۲	Test zone with UO2 fuel pins Test zone with UO2 fuel pins					

Model simplifications to improve calculation time:

- Homogeneized driver zone
- Simplified description of the graphite reflector
- ⇒ Validation studies were done to assess the relevance of these simplifications

Neutron activation experiements are analysed by reaction rate computations

 $\Sigma_i \phi / \Sigma_{A \eta} \phi$

Pile oscillation experiments are analysed with the new IFP exact perturbation capability in **TRIPOLI4-DEV:**

 $\delta \rho_i / \delta \rho_{A_{11}}$

CALCULATION METHODS AND MODELS Uncertainty management

Uncertainties of three types

- Measurement uncertainty (from experimental report)
- Technological uncertainties (from IRPhE evaluation of CERES program + sample characteristics)
- Monte-Carlo convergence

Element	Parameter	V	±σ
	UO ₂ density (g/cm ³)	10.21	0.12
	UO ₂ enrichment in ²³⁵ U (% w/o)	3.000	0.005
	Fuel pellet diameter (mm)	8.046	0.0008
Fuel pin	Fuel clad outer diameter (mm)	9.40	0.07
	Overclad inner diameter (mm)	9.70	0.07
	Overclad outer diameter (mm)	11.0	0.07
	Lattice pitch (cm)	1.260	0.002
Moderator	H ₂ O density (g/cm ³)	0.998	0.001
Oscillation rod	Outer diameter (mm)	13.00	0.07
Oscillation basket	Central channel outer diameter	13.20	0.07
	Side length (mm)	36.00	0.03

APOLLO2/P_{ii} model for uncertainty analysis

- Fast and enough accurate to evaluate derivates of calculated values to model parameters
- Use to evaluate Δ between ND libraries

 07
 F

 03
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

 F
 F

PAGE 10

S

OUTLINE

- Context
- Description of the Experiments
- Calculations methods and models
- Analysis of spectral characteristization experiments
- Analysis of neutron activation experiments
- Analysis of pile-oscillation experiments
- Conclusions and further works

- Micro fission chambers of thermal (²³⁵U, ²³⁹Pu) and threshold reaction (²⁴⁰Pu, ²⁴²Pu)
 A measurement of the microscopic fission ratio
- Monte-Carlo model: accurate FC description to account for flux perturbation

C/E results

		Uncerta	ainty budg	C/E-1			
Spectral index	. –	. –		. –	T4/3D	T4/3D	AP2/MoC
	$\pm \sigma_{meas}$	$\pm \sigma_{tech}$	$\pm \sigma_{\sf MC}$	$\pm \sigma_{tot}$	J32	J311	J32
²³⁸ U / ²³⁵ U	1.3%	1.4%	0.7%	2.0%	-1.3%	-4.1%	0.3%
²³⁷ Np / ²³⁵ U	1.8%	1.7%	0.7%	2.6%	-3.4%	-3.5%	-4.2%
²³⁹ Pu / ²³⁵ U	1.0%	0.4%	0.8%	1.4%	2.9%	3.2%	0.4%
²⁴⁰ Pu / ²³⁹ Pu	1.5%	1.3%	0.8%	2.1%	0.1%	-1.5%	1.9%
²⁴² Pu / ²³⁹ Pu	1.4%	1.3%	0.7%	2.0%	-3.4%	-3.6%	-3.8%

Thin foils of gold (thermal) and Nickel (> 2MeV)

⇒ Measurement of the activation rate ratio

Monte-Carlo model: actual description of the foils to account for their flux perturbation

C/E results

		Uncertainty budget				
Reaction rate ratio	$\pm\sigma_{meas}$	$\pm\sigma_{\text{tech}}$	$\pm\sigma_{\text{MC}}$	$\pm\sigma_{tot}$	T4/3D J32	
⁵⁸ Ni(n,p) / ¹⁹⁷ Au(n,γ)	1.9%	1.5%	2.0%	3.1%	-2.6%	

UO₂ samples of various enrichments (0.5% and 3%)

⇒ Measurement of the capture rate on ²³⁸U and total fission rate of ²³⁵U+²³⁸U

Monte-Carlo model: actual sample description

C/E results

Complete		Uncertain	C/E	C/E-1		
Samples	$\pm\sigma_{meas}$	$\pm \sigma_{\text{tech}}$	$\pm \sigma_{\text{MC}}$	$\pm\sigma_{tot}$	T4/J32	T4/J311
UO ₂ -0.5%	1.5%	1.2%	0.4%	2.0%	-0.9%	-0.2%
UO ₂ -3.0%	1.6%	1.4%	0.4%	2.2%	3.3%	3.5%

Thin foils of gold, indium, silver and small solution sample of CsF ⇒ Measurement of the capture rate with and without a 0.8mm Cd cover

Monte-Carlo model: actual description of the foils to account for their flux perturbation

C/E results (with isomeric ratio from EAF-2010 at thermal energy)

	-		Uncertainty budget				C/E-1		
		Reaction rate ratio					T4/3D	T4/3D	
			$\pm \sigma_{meas}$	$\pm\sigma_{tech}$	$\pm\sigma_{\sf MC}$	$\pm\sigma_{tot}$	J32	J311	
¹⁹⁸ Au	\leftarrow	¹⁹⁷ Au(n,γ) _{Cd} / ¹⁹⁷ Au(n,γ)	0.7%	0.5%	0.6%	1.1%	0.8%	2.0%	
^{116m} In	\leftarrow	¹¹⁵ In(n,γ) _{Cd} / ¹¹⁵ In(n,γ)	1.1%	0.5%	0.4%	1.3%	6.0%	6.2%	
^{110m} Ag	\leftarrow	¹⁰⁹ Ag(n,γ) _{Cd} / ¹⁰⁹ Ag(n,γ)	1.1%	0.5%	0.4%	1.3%	-1.2%	-2.2%	
^{134m} Cs	\leftarrow	133 Cs(n, γ) _{cd} / 133 Cs(n, γ)	0.7%	1.0%	0.1%	1.2%	7.0%	6.9%	

Possible effect due to the dependance of isomeric ratio with incident neutron energy?

The isomeric ratio ^{116m}In/^{116gs}In in nuclear data libraries :

- Missing from JEFF-3x
- Energy independant in ENDFBVII (3.77)
- Linearly decreasing from thermal (3.65) to 2 keV (0.07) in EAF-2010

OUTLINE

- Context
- Description of the Experiments
- Calculations methods and models
- Analysis of spectral characteristization experiments
- Analysis of neutron activation experiments
- Analysis of pile-oscillation experiments
- Conclusions and further works

DE LA RECHERCHE À L'INDUSTRIE

ANALYSIS OF NEUTRON ACTIVATION EXPERIMENTS Experimental technique

Neutron activation experiments

- Irradiation time of 1 to 3h at 80W
- Cooling time of a few hours
- γ-spectrum measurements during acquisition time of ~minutes to ~hours

Calculated correction factor to account for

- Self-absorption inside the sample
- Volumic distribution of the γ-source

Radioactive decay data

- Half life
- γ-emission probability
- isomeric rate for metastable state nuclides

Normalisation of relative activity measurements against gold capture rate

⇒ Use of 3 pure rods and 1 Al alloy of gold

DE LA RECHERCHE À L'INDUSTRI

ANALYSIS OF NEUTRON ACTIVATION EXPERIMENTS C/E comparison

		Reaction of interest	C/	′E-1	U	Incertaint	y budge	t
Samples	Composition		T4/J32	T4/J311	$\pm \sigma_{\text{meas}}$	$\pm \sigma_{\text{tech}}$	$\pm \sigma_{\text{MC}}$	$\pm \sigma_{tot}$
M-Ag-2	4% HNO_3 + 302 g/L AgNO ₃	¹⁰⁹ Ag(n,γ) ^{110m} Ag	0.4%	-0.2%	0.5%	0.8%	0.4%	1.5%
		¹⁵¹ Eu(n,γ) ^{152m} Eu	-10.4%	-11.0%	2.0%	0.9%	0.4%	1.4%
M-Eu	5% HNO ₃ + 8.75g/L Eu	¹⁵¹ Eu(n,γ) ¹⁵⁴ Eu ¹⁵³ Eu(n,γ) ¹⁵⁴ Eu	-10.1% -6.5%	-10.5% -7.0%	0.5% 1.1%	1.4% 0.8%	0.4% 0.4%	2.1% 1.5%
M-In-2	4% HNO ₃ + 50.1 g/L In(NO ₃) ₃	¹¹³ ln(n,γ) ^{114m} ln ¹¹⁵ ln(n,γ) ^{116m} ln	- 12.0% -2.5%	-12.6% -3.2%	1.8% 1.4%	1.3% 0.9%	0.4% 0.4%	2.4% 2.0%
M-Cs-2	4% HNO ₃ + 167 g/L CsNO ₃	¹³³ Cs(n,γ) ^{134m} Cs ¹³³ Cs(n,γ) ^{134(gs+m)} Cs	1.0% -1.0%	0.4% -1.7%	3.5% 0.6%	1.1% 1.1%	0.4% 0.4%	3.8% 1.6%
M-Zy4	Zy+1%Sn rod (∅=9.8 mm)	⁹⁴ Zr(n,γ) ⁹⁵ Zr ⁹⁶ Zr(n,γ) ⁹⁷ Zr	8.8% -3.8%	17.6% -4.4%	1.0% 0.8%	2.1% 3.7%	0.4% 1.8%	2.5% 4.4%
M-Sn	Sn rod (∅=10.0 mm)	¹¹² Sn(n,γ) ¹¹³ Sn ¹²² Sn(n,γ) ^{123m} Sn	25.8% -2.7%	25.0% 20.1%	1.3% 1.5%	1.9% 1.1%	1.0% 0.5%	2.8% 2.1%
M-Zn	Zn rod (Ø=9.7 mm)	⁶⁴ Zn(n,γ) ⁶⁵ Zn ⁶⁸ Zn(n,γ) ^{69m} Zn	2.3% 7.0%	-	1.3% 0.9%	2.0% 3.9%	0.2% 0.1%	2.6% 4.2%
M-Mo	Mo rod (Ø=6.0 mm)	⁹⁸ Mo(n,γ) ⁹⁹ Mo ¹⁰⁰ Mo(n,γ) ¹⁰¹ Mo	0.0% -2.9%	-0.9% -2.7%	1.0% 1.4%	2.1% 3.5%	0.6% 0.6%	2.0% 3.5%

Confirmation of JEFF-3.2 capture cross section evaluations for ⁹⁸Mo, ¹⁰⁰Mo, ¹¹⁵In, ¹⁰⁹Ag, ¹³³Cs, ⁹⁶Zr, ⁶⁴Zn, ⁶⁸Zn

- JEFF-3.1.1 ⇒ JEFF-3.2 impovements for ⁹⁴Zr, ¹²²Sn
- Improvement required for ¹⁵¹Eu, ¹⁵³Eu, ¹¹³In, ⁹⁴Zr, ¹¹²Sn
 - Underestimation of ¹⁵³Eu capture consistent with BUC program results

OUTLINE

- Context
- Description of the Experiments
- Calculations methods and models
- Analysis of spectral characteristization experiments
- Analysis of neutron activation experiments
- Analysis of pile-oscillation experiments
- Conclusions and further works

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS Experimental technique

Pile-oscillation experiments

- Servo-driven calibrated pilot rod
- At least 5 measures of 10 cycle oscillations per sample

Normalisation of relative reactivity worth measurements against reactivity worth calculations

- Pure rods of gold (99.995%) of various diameters : 1.0, 1.6 and 2.0mm
- 8 calibrated solutions
 - 350 ppm to 1400 ppm ¹⁰B
 - 820 to 3280 ppm of ⁶Li

Improvement of measurement uncertainty (±0.01 pcm) with respect to older programmes (±0.02 pcm)

- Watertight guide tube
- Higher reactor power (50W vs 30W)
- Minimization centering errors in the core (free space reduction)
- Optimisation between number of cycles and measurements

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – 10cm long rod-type samples

Samples	Composition	C,	/E-1	Uncertainty budget			
		T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{\text{tech}}$	$\pm\sigma_{MC}$	$\pm\sigma_{tot}$
M-Cr	Cr rod (∅=7.1 mm)	-0.5%	-1.8%	0.2%	1.0%	0.1%	1.1%
M-SS316	Stainless-Steel 316L rod (Ø=6.0 mm)	-0.7%	-1.1%	0.3%	1.0%	0.2%	1.1%
M-Be	Be rod (∅=7.0 mm)	2.5%	2.2%	1.4%	1.3%	0.1%	1.9%
M-CH2	CH2 rod (∅=6.7 mm)	3.6%	4.2%	0.5%	4.9%	0.1%	4.5%
M-Cu	Cu rod (∅=6.3 mm)	0.4%	-0.6%	0.2%	1%	0.4%	1.9%
M-Fe	Fe rod (∅=7.9 mm)	0.3%	0.5%	0.3%	0.9%	0.4%	1.2%
M-Inco	Inconel-718 rod (∅=6.0 mm)	- 8.0%	-8.1%	0.2%	1.0%	0.4%	1.1%
M-Mo	Mo rod (∅=6.0 mm)	0.9%	0.6%	0.3%	1.5%	0.3%	1.3%
M-Nb	Nb rod (∅=9.9 mm)	11.7%	12.0%	0.3%	2.6%	0.3%	2.4%
M-Ni	Ni rod (∅=4.9 mm)	2.6%	2.7%	0.3%	1.0%	0.6%	1.3%
M-SS304	Stainless-Steel 304L rod (∅=6.0 mm)	0.3%	0.0%	0.3%	0.9%	0.3%	1.1%
M-Ti	Ti rod (∅=6.4 mm)	-8.0%	-7.9%	0.5%	1.0%	0.4%	1.3%
M-Zn	Zn rod (∅=9.7 mm)	6.4%	17.3%	0.4%	1.4%	0.3%	1.2%
M-Al2O3-1	Alumina powder	- 2.9%	-1.5%	9.8%	1.5%	0.4%	9.9%

- Confirmation of JEFF-3.2 capture cross section evaluations for Fe, Cr, Ni, Mo, Cu + good consistency with stainless steel results
- Confirmation of JEFF-3.2 scattering cross section evaluations for CH2 and Be
- Improvement required for Zn, Ti, Nb
- Odd result for Inconel-718 alloy (mostly Ni)

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – 30cm long rod-type samples

Samples	Composition	C,	/E-1	Uncertainty budget			
		T4/J32	T4/J311	$\pm\sigma_{\text{meas}}$	$\pm\sigma_{\text{tech}}$	$\pm\sigma_{MC}$	$\pm\sigma_{tot}$
M-Al	Al rod (∅=10.2 mm)	27.1%	28.7%	1.1%	1.4%	2.5%	2.9%
M-Al5754	Al-5754 rod (∅=10.0 mm)	-5.2%	-4.9%	0.8%	1.3%	0.4%	1.4%
M-C	C rod (∅=10.0 mm)	-30.9%	-30.5%	0.7%	1.5%	0.6%	1.7%
M-M5	Zy+1%Nb rod (∅=10.0 mm)	94.7%	95.3%	1.6%	3.3%	0.4%	3.3%
M-Mg	Mg rod (∅=10.0 mm)	-76.7%	-82.0%	4.1%	6.9%	1.3%	8.7%
M-Si	Si rod (Ø=10.1 mm)	34.0%	34.2%	2.0%	1.3%	0.3%	2.3%
M-Sn	Sn rod (∅=10.0 mm)	19.7%	20.0%	0.2%	2.4%	0.4%	2.1%
M-Zy4	Zy+1%Sn rod (∅=9.8 mm)	112.6%	113.1%	1.8%	3.1%	0.3%	3.2%

Pure Al and Al5754 alloy (3% Mg) should be consistent

Reactivity worth breakdown for Al							
I	sotopes	% total	% capture	% elastic	% inelastic		
Dopant	²⁷ AI	100	137.4	-19.7	-17.7		
Rea	Reactivity worth breakdown for Al5754						
	Isotopes	% total	% capture	% elastic	% inelastic		
	²⁷ AI	87.3	121	-15.6	-18.1		
Dopant	²⁴ Mg	-0.4	0.8	-0.8	-0.4		
	²⁵ Mg	0.2	0.4	<0.1	<0.1		
	²⁸ Si	0.1	0.2	<0.1	<0.1		
	⁵⁴ Fe	0.1	0.1	<0.1	<0.1		
	⁵⁶ Fe	2.1	2.1	<0.1	<0.1		
Matrix and/or	⁶³ Cu	0.2	0.3	<0.1	<0.1		
impurities	⁵⁵ Mn	9.2	9.3	-0.1	<0.1		
	⁵³ Cr	0.1	0.1	<0.1	<0.1		
	⁴⁸ Ti	0.2	0.2	<0.1	<0.1		
	¹⁹⁹ Hg	0.5	0.5	<0.1	<0.1		

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – 30cm long rod-type samples

Samples	Composition	C,	/E-1	Uncertainty budget			
	p	T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{\text{tech}}$	$\pm\sigma_{MC}$	$\pm\sigma_{tot}$
M-Al	Al rod (∅=10.2 mm)	27.1%	28.7%	1.1%	1.4%	2.5%	2.9%
M-Al5754	Al-5754 rod (∅=10.0 mm)	-5.2%	-4.9%	0.8%	1.3%	0.4%	1.4%
M-C	C rod (∅=10.0 mm)	-30.9%	-30.5%	0.7%	1.5%	0.6%	1.7%
M-M5	Zy+1%Nb rod (∅=10.0 mm)	94.7%	95.3%	1.6%	3.3%	0.4%	3.3%
M-Mg	Mg rod (∅=10.0 mm)	- 76.7%	-82.0%	4.1%	6.9%	1.3%	8.7%
M-Si	Si rod (∅=10.1 mm)	34.0%	34.2%	2.0%	1.3%	0.3%	2.3%
M-Sn	Sn rod (∅=10.0 mm)	19.7%	20.0%	0.2%	2.4%	0.4%	2.1%
M-Zy4	Zy+1%Sn rod (∅=9.8 mm)	112.6%	113.1%	1.8%	3.1%	0.3%	3.2%

Reactivity worth breakdown for Zy4

Zy4 and M5 rods are more or less consistent

 \Rightarrow ⁹¹Zr capture??

Reactivity worth breakdown for M5 TM							
	Isotopes	% total	% capture	% elastic	% inelastic		
	⁹⁰ Zr	-6.7	11.8	-4.5	-14		
	⁹¹ Zr	73.1	79.5	-1.5	-4.8		
Dopant	⁹² Zr	13.2	24	-1	-9.7		
	⁹⁴ Zr	-5.3	7.3	-1.8	-10.6		
	⁹⁶ Zr	6.6	8.1	-0.3	-1.1		
	⁹³ Nb	11.9	12.7	<0.1	-0.7		
	¹⁶ O	-0.2	<0.1	-0.2	<0.1		
	¹⁰ B	0.5	0.5	<0.1	<0.1		
	¹¹³ Cd	0.3	0.3	<0.1	<0.1		
Matrix and/or	⁵⁶ Fe	0.6	0.6	<0.1	<0.1		
impurities	¹⁷⁷ Hf	3.9	3.9	<0.1	<0.1		
	¹⁷⁸ Hf	1.2	1.2	<0.1	<0.1		
-	¹⁷⁹ Hf	0.2	0.2	<0.1	<0.1		
	¹⁴ N	-0.5	-0.5	<0.1	<0.1		
	¹⁸¹ Ta	0.8	0.8	<0.1	< 0.1		

	Isotopes	% total	% capture	% elastic	% inelastic
	⁹⁰ Zr	-6.7	11.3	-4.4	-13.5
	⁹¹ Zr	69.7	76.2	-1.8	-4.6
	⁹² Zr	11.7	23.1	-2	-9.3
	⁹⁴ Zr	-4.2	7.1	-0.8	-10.2
	⁹⁶ Zr	6.2	7.6	-0.2	-1.1
	¹¹² Sn	0.3	0.3	<0.1	<0.1
Dopant	¹¹⁵ Sn	0.4	0.4	< 0.1	<0.1
	¹¹⁶ Sn	1.6	1.6	< 0.1	<0.1
	¹¹⁷ Sn	1.7	1.8	< 0.1	<0.1
	¹¹⁸ Sn	1.2	1.3	<0.1	<0.1
	¹¹⁹ Sn	1	1.1	< 0.1	<0.1
	¹²⁰ Sn	0.4	0.6	< 0.1	-0.1
	¹²⁴ Sn	0.4	0.4	< 0.1	<0.1
	⁵⁰ Cr	1.1	1.1	< 0.1	<0.1
	⁵² Cr	1.1	1.3	< 0.1	<0.1
	⁵³ Cr	2.9	2.9	<0.1	<0.1
	⁵⁴ Fe	0.3	0.3	< 0.1	<0.1
	⁵⁶ Fe	5	5.1	< 0.1	-0.1
	⁵⁷ Fe	0.1	0.1	<0.1	<0.1
Mantalia and /an	¹⁶ O	-0.2	<0.1	-0.2	<0.1
iviatrix and/or	¹⁰ B	0.5	0.5	< 0.1	<0.1
impunties	¹¹³ Cd	0.2	0.2	< 0.1	<0.1
	¹ H	-0.2	<0.1	-0.2	
	¹⁷⁷ Hf	3.2	3.2	< 0.1	<0.1
	¹⁷⁸ Hf	1.1	1.1	< 0.1	<0.1
	¹⁷⁹ Hf	0.2	0.2	<0.1	<0.1
	¹⁴ N	-0.4	-0.4	< 0.1	<0.1
	¹⁸¹ Ta	0.8	0.8	< 0.1	<0.1

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – 30cm long rod-type samples

Samples	Composition	C,	/E-1	Uncertainty budget			
	p	T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{\text{tech}}$	$\pm\sigma_{MC}$	$\pm\sigma_{tot}$
M-Al	Al rod (∅=10.2 mm)	27.1%	28.7%	1.1%	1.4%	2.5%	2.9%
M-Al5754	Al-5754 rod (∅=10.0 mm)	-5.2%	-4.9%	0.8%	1.3%	0.4%	1.4%
M-C	C rod (∅=10.0 mm)	-30.9%	-30.5%	0.7%	1.5%	0.6%	1.7%
M-M5	Zy+1%Nb rod (∅=10.0 mm)	94.7%	95.3%	1.6%	3.3%	0.4%	3.3%
M-Mg	Mg rod (∅=10.0 mm)	- 76.7%	-82.0%	4.1%	6.9%	1.3%	8.7%
M-Si	Si rod (Ø=10.1 mm)	34.0%	34.2%	2.0%	1.3%	0.3%	2.3%
M-Sn	Sn rod (∅=10.0 mm)	19.7%	20.0%	0.2%	2.4%	0.4%	2.1%
M-Zy4	Zy+1%Sn rod (∅=9.8 mm)	112.6%	113.1%	1.8%	3.1%	0.3%	3.2%

Unexpected result for graphite: C/E-1 = -31% !!!

⇒ ^{nat}C scattering is a standard cross section

Several possible causes of errors were investigated

- Bias in the IFP calculation method
 - ⇒ Consistency with APOLLO2.8/MoC (<2%)
- Missing impurities from the material certificate?
 - ⇒ Capturing isotopes would increase the C/E
- Photonuclear reaction
 - \Rightarrow ¹³C(γ ,n) effect : <0.01%

Neutron Cross-section Standards

Reaction	Neutron Energy Ran	ge		
	1097		2002-2005/06	
	1987		ENDF-6 Format	Free text Format
H(n,n)	1 keV to 20 MeV	1 keV to 20 MeV	std-001_H_001.endf	not available
³ He(n,p)	0.0253 eV to 50 keV	0.0253 eV to 50 keV (1987 adopted)	std-002_He_003.endf	not available
⁶ Li(n,t)	0.0253 eV to 1 MeV	0.0253 eV to 1 MeV	std-003_Li_006.endf	standards-6Li_xs- data.txt
¹⁰ B(n,a)	0.0253 eV to 250 keV	0.0253 eV to 1 MeV	std-005_B_010.endf	standards-10B_na-xs- data.txt
¹⁰ Β(n,a ₁ γ)	0.0253 eV to 250 keV	0.0253 eV to 1 MeV	std-005_B_010.endf	standards-10B_na1- xs-data.txt
C(n,n)	up to 1.8 MeV	up to 1.8 MeV (1987 adopted)	std-006_C_000.endf	not available
Au(n,y)	0.0253 eV, and 0.2 to 2.5 MeV	0.0253 eV, and 0.2 to 2.5 MeV	std-079_Au_197.endf	standards-197Au_xs- data.txt
²³⁵ U(n,f)	0.0253 eV, and 0.15 to 20 MeV	0.0253 eV, and 0.15 to 200 MeV	std-092_U_235.endf	standards-235U_xs- data.txt
²³⁸ U(n,f)	threshold to 20 MeV	2 to 200 MeV	std-092_U_238.endf	standards-238U_xs- data.txt

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – 30cm long rod-type samples

Samples	Composition	C,	/E-1	Uncertainty budget			
		T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{\text{tech}}$	$\pm\sigma_{\text{MC}}$	$\pm\sigma_{tot}$
M-Al	Al rod (∅=10.2 mm)	27.1%	28.7%	1.1%	1.4%	2.5%	2.9%
M-Al5754	Al-5754 rod (∅=10.0 mm)	-5.2%	-4.9%	0.8%	1.3%	0.4%	1.4%
M-C	C rod (∅=10.0 mm)	-30.9%	-30.5%	0.7%	1.5%	0.6%	1.7%
M-M5	Zy+1%Nb rod (∅=10.0 mm)	94.7%	95.3%	1.6%	3.3%	0.4%	3.3%
M-Mg	Mg rod (∅=10.0 mm)	-76.7%	-82.0%	4.1%	6.9%	1.3%	8.7%
M-Si	Si rod (∅=10.1 mm)	34.0%	34.2%	2.0%	1.3%	0.3%	2.3%
M-Sn	Sn rod (∅=10.0 mm)	19.7%	20.0%	0.2%	2.4%	0.4%	2.1%
M-Zy4	Zy+1%Sn rod (Ø=9.8 mm)	112.6%	113.1%	1.8%	3.1%	0.3%	3.2%

Mg, Sn and Si: non usual materials in reactors (or in small amounts)

⇒ Realistic ? Unrealistic?

Reactivity worth breakdown for Mg

	Isotopes	% total	% capture	% elastic	% inelastic
	²⁴ Mg	194.5	-413.3	392.6	215.2
Dopant	²⁵ Mg	-114.6	-185.3	38.1	31.5
	²⁶ Mg	28.1	-33.8	38.4	23.4
	²⁷ Al	-0.1	-0.2	<0.1	<0.1
	⁶³ Cu	-0.6	-0.6	<0.1	<0.1
Matrix and /or	⁶⁵ Cu	-0.1	-0.1	<0.1	<0.1
impurition	⁵⁶ Fe	-0.4	-0.4	<0.1	<0.1
impunties	⁵⁵ Mn	-5.6	-5.7	<0.1	<0.1
	⁵⁸ Ni	-0.6	-0.6	<0.1	<0.1
	⁶⁰ Ni	-0.1	-0.1	<0.1	<0.1

Reactivity worth breakdown for Si

	Isotopes	% total	% capture	% elastic	% inelastic
	²⁸ Si	93.7	140.1	-30.6	-15.7
Dopant	²⁹ Si	2.4	5.4	-1.3	-1.7
	³⁰ Si	3.9	5.5	-1	-0.7

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – Liquid type samples

Samples	Composition	C/	′E-1	Uncertainty budget			
••••••		T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{\text{tech}}$	$\pm\sigma_{MC}$	$\pm \sigma_{tot}$
M-H2O-1	H ₂ O (5.35g)	2.1%	2.6%	0.3%	4.9%	0.1%	4.5%
M-H2O-3	H ₂ O (4.50g)	5.6%	6.1%	0.7%	4.9%	0.1%	4.6%
M-D2O	D_2O	-32.3%	-34.0%	0.6%	1.6%	0.1%	1.6%
M-Cd	5% HNO ₃ + 6.74g/L Cd	1.5%	3.9%	0.2%	1.2%	0.5%	1.2%
M-Cl	$H_2O + 298g/L NaCl$	1.1%(*)	1.2%	0.2%	1.2%	0.3%	1.1%
M-Eu	5% HNO₃ + 8.75g/L Eu	- 3.2%	-3.1%	0.2%	1.2%	0.3%	1.1%
M-Gd	5% HNO ₃ + 1.25g/L Gd	-2.4%	-2.5%	0.2%	1.0%	0.3%	1.2%
M-Ag-2	4% HNO ₃ + 302 g/L AgNO ₃	3.2%	3.0%	0.4%	1.9%	0.5%	1.7%
M-Co-2	4% HNO ₃ + 197 g/L Co(NO ₃) ₂	9.5%	-	1.6%	1.7%	0.4%	2.2%
M-Cs-2	4% HNO ₃ + 167 g/L CsNO ₃	2.6%	2.5%	1.2%	2.4%	0.5%	2.4%
M-Dy-2	4% HNO ₃ + 52.6 g/L DyNO ₃	-1.0%	-0.7%	0.5%	1.2%	0.3%	1.2%
M-Er-2	4% HNO ₃ + 49.8 g/L ErNO ₃	5.8%	5.6%	1.5%	2.0%	0.3%	2.3%
M-In-2	4% HNO ₃ + 50.1 g/L ln(NO ₃) ₃	6.2%	-	0.9%	2.2%	0.5%	2.1%
M-Mn-2	4% HNO ₃ + 299 g/L Mn(NO ₃) ₂	4.8%	3.8%	2.3%	1.9%	0.3%	2.8%

Confirmation of JEFF-3.2 reactivity effect of light water

Very odd result for D_2O : same value than ^{nat}C of C/E-1=-32% (both pure scattering materials)

- Bias in the IFP calculation method
 - \Rightarrow Consistency with APOLLO2.8/MoC (0.5%)
- Missing impurities from the material certificate?
 - ⇒ The C/E would be even worse with the addition of capturing isotopes
- Photonuclear reaction \Rightarrow D(γ ,n) effet : ~0.1%
- S(α , β) of D_D2O were replaced by the one of D (free gas): no more than 2% difference

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – Liquid type samples

Samples	Composition	C/	′E-1	Uncertainty budget			
••••••p·•••		T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{\text{tech}}$	±σ _{MC}	$\pm\sigma_{tot}$
M-H2O-1	H ₂ O (5.35g)	2.1%	2.6%	0.3%	4.9%	0.1%	4.5%
M-H2O-3	H ₂ O (4.50g)	5.6%	6.1%	0.7%	4.9%	0.1%	4.6%
M-D20	D_2O	-32.3%	-34.0%	0.6%	1.6%	0.1%	1.6%
M-Cd	5% HNO ₃ + 6.74g/L Cd	1.5%	3.9%	0.2%	1.2%	0.5%	1.2%
M-Cl	$H_2O + 298g/L NaCl$	1.1%(*)	1.2%	0.2%	1.2%	0.3%	1.1%
M-Eu	5% HNO₃ + 8.75g/L Eu	- 3.2%	-3.1%	0.2%	1.2%	0.3%	1.1%
M-Gd	5% HNO ₃ + 1.25g/L Gd	-2.4%	-2.5%	0.2%	1.0%	0.3%	1.2%
M-Ag-2	4% HNO ₃ + 302 g/L AgNO ₃	3.2%	3.0%	0.4%	1.9%	0.5%	1.7%
M-Co-2	4% HNO ₃ + 197 g/L Co(NO ₃) ₂	9.5%	-	1.6%	1.7%	0.4%	2.2%
M-Cs-2	4% HNO ₃ + 167 g/L CsNO ₃	2.6%	2.5%	1.2%	2.4%	0.5%	2.4%
M-Dy-2	4% HNO ₃ + 52.6 g/L DyNO ₃	-1.0%	-0.7%	0.5%	1.2%	0.3%	1.2%
M-Er-2	4% HNO ₃ + 49.8 g/L ErNO ₃	5.8%	5.6%	1.5%	2.0%	0.3%	2.3%
M-In-2	4% HNO ₃ + 50.1 g/L ln(NO ₃) ₃	6.2%	-	0.9%	2.2%	0.5%	2.1%
M-Mn-2	4% HNO ₃ + 299 g/L Mn(NO ₃) ₂	4.8%	3.8%	2.3%	1.9%	0.3%	2.8%

Confirmation of JEFF-3.2 reactivity worth for Cd, Cl, Gd, Ag, Cs, Dy, Mn

 \Rightarrow Cd clearly improved from JEFF-3.1.1 to JEFF-3.2

⇒Consistent trend with neutron activation experiments for Cs and Ag

⇒Mn result not consistent with MAESTRO Phase I experiments using a Mn rods

	Reactivity worth breakdown for Cs							
	Isotopes	% total	% capture	% elastic	% inelastic			
Dopant	¹³³ Cs	86.6	86.7	<0.1	-0.2			
Matrix and/or	¹ H	9.9	-2.8	12.6				
impurities	¹⁴ N	3.6	3.8	-0.2	<0.1			
	Reactivity worth breakdown for Mn							
	Isotopes	% elastic	% inelastic					
Dopant	⁵⁵ Mn	56.4	56.1	0.6	-0.3			
Matrix and /ar	¹ H	26.9	-7.3	34.2				
impurities	¹⁶ 0	-0.9	0.1	-1	<0.1			
impunties	¹⁴ N	17.6	18 5	-0.9	<0.1			

	Reactivity worth breakdown for Ag							
	Isotopes	% total	% capture	% elastic	% inelastic			
Dopont	¹⁰⁷ Ag	19.9	20	<0.1	<0.1			
Dopant	¹⁰⁹ Ag	74.3	74.3	<0.1	<0.1			
Matrix and/or	¹ H	4	-1.1	5.1				
impurities	¹⁴ N	1.9	2	<0.1	<0.1			

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – Liquid type samples

Samples	Composition	C/	′E-1	Uncertainty budget			
bampies		T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{tech}$	$\pm \sigma_{MC}$	$\pm \sigma_{tot}$
M-H2O-1	H ₂ O (5.35g)	2.1%	2.6%	0.3%	4.9%	0.1%	4.5%
M-H2O-3	H ₂ O (4.50g)	5.6%	6.1%	0.7%	4.9%	0.1%	4.6%
M-D20	D_2O	-32.3%	-34.0%	0.6%	1.6%	0.1%	1.6%
M-Cd	5% HNO ₃ + 6.74g/L Cd	1.5%	3.9%	0.2%	1.2%	0.5%	1.2%
M-Cl	$H_2O + 298g/L NaCl$	1.1%(*)	1.2%	0.2%	1.2%	0.3%	1.1%
M-Eu	5% HNO₃ + 8.75g/L Eu	- 3.2%	-3.1%	0.2%	1.2%	0.3%	1.1%
M-Gd	5% HNO ₃ + 1.25g/L Gd	-2.4%	-2.5%	0.2%	1.0%	0.3%	1.2%
M-Ag-2	4% HNO ₃ + 302 g/L AgNO ₃	3.2%	3.0%	0.4%	1.9%	0.5%	1.7%
M-Co-2	4% HNO ₃ + 197 g/L Co(NO ₃) ₂	9.5%	-	1.6%	1.7%	0.4%	2.2%
M-Cs-2	4% HNO ₃ + 167 g/L CsNO ₃	2.6%	2.5%	1.2%	2.4%	0.5%	2.4%
M-Dy-2	4% HNO ₃ + 52.6 g/L DyNO ₃	-1.0%	-0.7%	0.5%	1.2%	0.3%	1.2%
M-Er-2	4% HNO ₃ + 49.8 g/L ErNO ₃	5.8%	5.6%	1.5%	2.0%	0.3%	2.3%
M-In-2	4% HNO ₃ + 50.1 g/L ln(NO ₃) ₃	6.2%	-	0.9%	2.2%	0.5%	2.1%
M-Mn-2	4% HNO ₃ + 299 g/L Mn(NO ₃) ₂	4.8%	3.8%	2.3%	1.9%	0.3%	2.8%

Improvements and/or new measurements required for Er and In

 \Rightarrow Indium result not consistent with neutron activation experiments (C/E-1=-2.5±2.0%): impact of isomeric yield?

Reactivity worth breakdown for Er

Reactivity worth breakdown for In

	Isotopes	% total	% capture	% elastic	% inelastic		Isotopes	% total	% capture	% elastic	% inelastic
	¹⁶⁴ Er	0.2	0.2	<0.1	<0.1	Dopant	¹¹³ In	0.5	0.5	< 0.1	< 0.1
	¹⁶⁶ Er	2.5	2.6	<0.1	<0.1		¹¹⁵ In	Q/ /	Q/ /	<0.1	<0.1
Dopant	¹⁶⁷ Er	88.7	88.7	< 0.1	< 0.1		111	94.4	94.4	10.1	NU.1
	¹⁶⁸ Er	0.6	0.6	< 0.1	<0.1	Matrix and/or	Ή	3.2	-0.9	4.1	
	¹⁷⁰ Er	0.5	0.5	<0.1	<0.1	impurities	¹⁴ N	2	2.1	-0.1	<0.1
	¹ H	4.4	-1.2	5.6							
Matrix and/or — impurities —	¹⁶ 0	-0.2	<0.1	-0.2	<0.1					P/	AGE 29
	¹⁴ N	3.2	3.4	-0.2	<0.1						

ANALYSIS OF PILE-OSCILLATION EXPERIMENTS C/E comparison – Powder type samples

Samples	Composition	C,	/E-1	Uncertainty budget			
		T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{\text{tech}}$	$\pm \sigma_{\text{MC}}$	$\pm\sigma_{tot}$
M-Ag7	Al ₂ O ₃ + 1.34g ¹⁰⁷ Ag	- 3.0%	-2.9%%	0.2%	1.1%	0.3%	1.2%
M-Eu3	Al ₂ O ₃ + 0.425g ¹⁵³ Eu ₂ O ₃	- 3.5%	-3.7%	0.8%	1.2%	0.3%	1.5%
M-Rh	Al ₂ O ₃ + 0.198g ¹⁰³ Rh	1.4%	1.6%	1.2%	0.8%	0.3%	1.4%
M-Hf	Al ₂ O ₃ + 0.777g ^{nat} HfO ₂	1.7%	1.9%	0.4%	1.1%	0.3%	1.2%

- Slight underestimation of ¹⁰⁷Ag but acceptable regarding the low impact in fuel cycle studies
- Confirmation of ¹⁵³Eu underestimation, consistent with neutron activation experiments (C/E-1=-6.5±1.5%)
- Confirmation of ¹⁰³Rh capture with previous experiments on rod-type samples in the MAESTRO Phase-I experiment (C/E-1 = 0.2 ± 1.7%)
- Confirmation of ^{nat}Hf capture (mostly ¹⁷⁷Hf and ¹⁷⁸Hf capture)

OUTLINE

- Context
- Description of the Experiments
- Calculations methods and models
- Analysis of spectral characteristization experiments
- Analysis of neutron activation experiments
- Analysis of pile-oscillation experiments
- Conclusions and further works

Spectral characterization experiments

⇒Very good C/E agreements for all the different measurements ⇒Possible identification of energy dependant behaviour in the isomeric ratio of ¹¹⁵In and ¹³³Cs capture that could be of interest to improve nuclear structure data

Validation below 2σ uncertainty for

⇒Scattering materials: H2O, CH2, Be

⇒Capturing materials: Rh, Hf, Cd, Cl, Gd, Ag, Cs, Dy, Mn, Fe, Cr, Ni, Mo, Cu + consistency with stainless steel 304L and 316L

Evaluation improvements and/or additional measurements required for

⇒Scattering materials: D2O, C, Al, Mg

⇒Capturing materials: Nb, Ti, Zn, Zr, Si, Sn, Er, In, ¹⁰⁷Ag, ¹⁵¹Eu, ¹⁵³Eu

Some clear inconsistencies probably due to sample characterization issues

⇒Inconel-718 not consistent with Ni

⇒Al5754 not consistent with Al

Clear improvements between JEFF-3.1.1 and JEFF-3.2 for ⇒Capturing materials: ¹²²Sn, Zn (no isotopic evaluations in JEFF-3.1.1.), ¹¹³Cd

Sensitivity coefficients provided by the EGPT method in APOLLO2

Isotono		Sens	itivity coeffic	ients	
isotope	Capture	Scattering	Fission	Nu	Spectrum
¹⁰³ Rh	0.918	-7.45E-04			
¹ H	3.89E-02	-0.329			
²³⁵ U	1.88E-04	4.08E-06	0.136	2.22E-03	1.88E-03
²³⁸ U	4.43E-03	-4.27E-05	-4.73E-04	-1.63E-04	-1.22E-04

Use of CONRAD to derive trend and associated covariances on nuclear data

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)4 42 25 48 94 | F. +33 (0)4 42 25 70 09 Direction DEN Département DER Service SPRC

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

cea

CALCULATION METHODS AND MODELS TRIPOLI models of the MINERVE core

Reference 3D detailed model

~3000 lines, 400 volumes, 20 materials

- + « Exact model »
- Time consuming

« Benchmark » full core model

~500 lines, 25 volumes, 12 materials

- + FoM improved by ~3
- Possible spectral error due to modeling simplifications

E LA RECHERCHE À L'INDUSTRIE

CALCULATION METHODS AND MODELS Some V&V results on the benchmark models

Forward and adjoint flux

Reaction rates

Isotope	Model simplification bias on capture rates				
	3	±σ			
⁵⁵ Mn	-0.09%	0.15%			
⁵⁶ Fe	-0.05%	0.16%			
⁵⁸ Ni	-0.03%	0.14%			
⁵⁹ Co	0.00%	0.25%			
⁶³ Cu	0.28%	0.33%			
⁹³ Nb	0.23%	0.49%			

Model simplification bias on			
cadmium ratio			
3	±σ		
1.2%	1.7%		
1.0%	1.3%		
-1.9%	1.6%		
0.5%	1.6%		
	Model simplificat cadmium 8 1.2% 1.0% -1.9% 0.5%		

Samples	Composition	C/E-1		Uncertainty budget			
		T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{tech}$	$\pm\sigma_{MC}$	$\pm\sigma_{tot}$
C-AlAu	Rod of Al+0.1% ¹⁹⁷ Au	-1.1%	-1.1%	0.5%	1.0%	1.4%	1.6%
C-Au-10	Rod of ¹⁹⁷ Au (Ø=1.0 mm)	-0.9%	-0.8%	0.5%	0.7%	0.4%	0.9%
C-Au-16	Rod of ¹⁹⁷ Au (Ø=1.6 mm)	0.3%	0.3%	0.5%	0.7%	0.4%	0.9%
C-Au-20	Rod of ¹⁹⁷ Au (Ø=2.0 mm)	0.6%	0.6%	0.5%	0.7%	0.4%	0.9%

Good consistency between the different samples

⇒ Self-shielding + self-absorption corrections are correctly accounted for pure rods

ADDITIONAL SLIDES

Calibration of pile oscillation experiments

Samples	Composition	C/E-1		Uncertainty budget			
		T4/J32	T4/J311	$\pm\sigma_{meas}$	$\pm\sigma_{tech}$	$\pm\sigma_{MC}$	$\pm\sigma_{tot}$
C-B10-1	H ₂ O + 0.35g/L ¹⁰ B	-1.5%	-1.5%	0.3%	0.8%	0.3%	0.9%
C-B10-2	H ₂ O + 0.69g/L ¹⁰ B	- 2. 1%	-2.1%	0.2%	0.8%	0.3%	0.9%
C-B10-3	H ₂ O + 1.04g/L ¹⁰ B	0.3%	0.3%	0.1%	0.8%	0.3%	0.9%
C-B10-4	H ₂ O + 1.39g/L ¹⁰ B	-0.7%	-0.7%	0.1%	0.8%	0.3%	0.9%
C-Li6-1	5% HNO ₃ + 0.82g/L ⁶ Li	-0.1%	0.2%	0.3%	0.9%	0.2%	1.0%
C-Li6-2	5% HNO₃ + 1.64 g/L ⁶ Li	0.8%	1.1%	0.2%	0.9%	0.3%	1.0%
C-Li6-3	5% HNO ₃ + 2.46g/L ⁶ Li	0.5%	0.8%	0.1%	0.9%	0.3%	1.0%
C-Li6-4	5% HNO ₃ + 3.28g/L ⁶ Li	1.0%	1.3%	0.1%	0.9%	0.3%	1.0%
C-Au-10	Rod of ¹⁹⁷ Au (Ø=1.0 mm)	-0.2%	0.1%	0.4%	1.0%	0.4%	1.2%
C-Au-16	Rod of ¹⁹⁷ Au (Ø=1.6 mm)	0.8%	1.1%	0.2%	1.0%	0.3%	1.1%

Good consistency between the different samples

⇒ A 1% uncertainty appears to be acceptable (reduced by a factor of 2 compared with previous programmes)