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Model Defects
A model that cannot reproduce the underlying truth, no matter its parameters, can
have sever consequences

• Evaluation become biased towards the model.2,3

• Uncertainties will be underestimated – often severely.2,3

→ Model defects must be addressed.
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”All models are wrong,
some are useful.”
– G.E. Box, 1976



Background
The goal of this project is to develop a pipeline for nuclear data evaluation, that
implements (and further develops) methodology to treat model defects and
inconsistent experimental data that has originated in research activities at UU.
In addition, the pipeline should

• automatize as much as possible the steps involved in an evaluation

• create fully reproducible ND evaluations

• provide an intuitive framework for ND evaluation



The ND Evaluation Pipel ine
The pipeline is a bundle of software packages, along with a set of
scripts that each perform a step in a nuclear data evaluation
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Underlying assumption: knowledge about the cross-sections can be
represented by a multi-variate normal distribution of TALYS parameters



High Performance Computing

• Pipeline can run entirely on HPC
cluster

• MPI wrapper for Talys
– large scale parallelization

• Currently running on UPPMAXa

– Rackham cluster

• A full evaluation, including the
generation of random files, can be
performed in a few hours

• Greatly facilitates the testing and
validation of ideas and methods

aUppsala Multidisciplinary Center for
Advanced Computational Science
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Workflow in the Pipel ine
is divided into a number of steps, each represented by an R-script.

1. Data is retrieved from EXFOR → Mapped to TALYS predictions

2. Rule-based correction of uncertainties in data

3. Correction of uncertainties based on statistics

4. Talys parameter sensitivity evaluation

5. Setup of GP for energy dependence of parameters

6. Parameter optimization using the LM algorithm

7. Setup of GP in the observable domain

8. Re-optimization using the LM algorithm

9. Calculation of MVN approximation of the posterior pdf

10. Generation of random files



Treatment of Random Uncertainties
TALYS models the average cross-section, while experiments observe (unresolved)
resonance structure. Therefore, the variance of the data around the mean
cross-section is much larger than their reported random (statistical) variance.
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Not treating this model defect can lead to biased results and strongly
underestimated uncertainties of the fit.



Treatment of Random Uncertainties

• Estimate the distribution of data around a smooth energy-averaged
cross-section.

• The smooth cross-section should be influenced by the model as little as
possible.

• Assuming that the distribution is Normal, a Gaussian Process (GP) seems
like a good candidate.

• A GP models data by estimating the correlation between close-lying points
with a covariance function, e.g.

cov(y(xi ), y(xj)) = σ2 exp

[
− (xi − xj)

2

2λ2

]
+ τ 2δij

• The hyper-parameter λ controls the length-scale (smoothness)

• The random error in the data is modeled by the nugget parameter τ



Treatment of Random Uncertainties
To determine the distribution of data around a smooth mean function, we model it
using a heteroscedastic GP 4.

cov(y(xi ), y(xj)) = σ2 exp

[
− (xi − xj)

2

2λ2

]
+ τ 2δij

• The heteroscedastic GP introduces latent variance variables, placed under a
GP to allow a smoothly varying nugget parameter – variance of data around
the mean

τ 2δij → δ(x1), δ(x2), ..., δ(xn), δ(x) ∼ GP

4https://CRAN.R-project.org/package=hetGP



Treatment of Random Uncertainties

In practice...

• To separate random and systematic uncertainties, we apply the
procedure experiment by experiment.

• Experiments for which to apply the procedure are selected based on
the energy resolution in the experiment.

• The length scale is determined from a Marginal Likelihood
Optimization on default TALYS predictions.

• Hyper-parameters for the heteroscedastic GP are optimized with the
lengthscale λ fixed – simultaneous inference of mean xs and the
variance of the data



Treatment of Random Uncertainties
Example application on 56Fe(n,tot) data5
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• exp. data
— default TALYS
— GP mean xs
- - estimated random unc.

Finally, the reported random uncertainties of the selected experiments are replaced
by those estimated by the heteroscedastic GP before fitting TALYS parameters.
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Inconsistent data

What to do when the difference between the datasets is too large to be explained
by the reported uncertainties?

52Cr(n,p)



Correction of Systematic Uncertainties
The presence of unrecognized uncertainties can be identified if data-sets are
inconsistent with each other.

• A linear spline with a MVN prior on the values at
the knot-points – induces a Gaussian process

• We use a prior on the second derivative at the knot-points
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• The prior is based on the default TALYS calculation

• µ – default TALYS prediction
• Σ – diag(µ)



Correction of Systematic Uncertainties
The presence of unrecognized uncertainties can be identified if data-sets are
inconsistent with each other.

• The resulting distribution of linear splines is used in a marginal likelihood
optimization of normalization uncertainties in the experiments.

det (Σ)−1/2 exp

[
−1

2
(x⃗ − µ⃗)TΣ(x⃗ − µ⃗)

]

x⃗ = experimental cross sections

µ⃗ = linear spline

Σ = Σexp +Σspline +Σextra

Added normalization uncertainty of each experiment is contained in Σextra



Correction of Systematic Uncertainties

Outliers are assigned inflated normalization uncertainty.

inflated
total unc.

posterior mean
of linear spline



Treatment of Model Defects
- GP in the parameter domain6

• Incident energy-dependent variation of parameters around global value

• The variation is modeled with a Gaussian process (GP)

σ(Ej) = f (Ej ; p⃗ + δ⃗(Ej)) + ε, δ⃗(E ) ∼ GP

• Smooth variation of parameter values with energy

• Consistent physics description at each energy

• TALYS conserves the sum-rules

• In the presence of model defects,
parameter uncertainty is mainly
constrained were there is data

6
P. Helgesson & H. Sjöstrand, Ann. Nucl. Energy 120 (2018) 35-47
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EXAMPLE OF RESULTS

APPL ICAT ION OF THE P IPEL INE ON
52CR CROSS -SECT IONS



Exclusive particle production xs

52Cr(n,p)

52Cr(n,2n)

— posterior mean (black)

- - prior mean (red)



Channels affected by resonance structure

52Cr(n,inel)

52Cr(n,tot)

— posterior mean (black)

- - prior mean (red)

• Low χ2 for the (n,tot)-channel could
indicate an overestimated random
uncertainty by the heteroscedastic GP



Cross-val idation
number of degrees of freedom is not well defined for non-linear models with priors

• 5-fold cross-validation

• Experimental data is randomly divided into 5 subsets
• each time 20% is left out

• The pipeline is executed in full on each data-set

• χ2 for the data left out from the fit

χ2 = rTΣ−1r

Σ = Σexp +Σres +Σextra +ΣGP

Σexp = experimental covariance matrix
Σres = estimated random unc. due to resonance structure

Σextra = added normalization unc. through MLO
ΣGP = cov. function of the residual model defect GP



Cross-val idation – results

• Overall good performance.

• Indicates that the automated procedures perform well.

• A slight tendency to overestimate uncertainties is noted.

DATASET ndf χ2 χ2/ndf
1 1731 1735.56 1.00
2 1731 1732.94 1.00
3 1729 1755.52 1.02
4 1730 1498.83 0.87
5 1730 1659.85 0.96

sum 8651 8378.70 0.97±0.02
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Outlook: Low-energy structure
Energy-dependent Talys parameters cannot reproduce rapid variation in low energy
region (1-5 MeV).

The evaluation must respect the sum-rules.



Construction of a Defect model
Sum-rules are defined in accordance with TALYS notation

σtot = σel + σnon-el

σnon-el =
∑

n

∑

p

∑

d

∑

t

∑

h

∑

α

σex(n, p, d , t, h, α)

• An energy grid is chosen, on which the evaluation is to be performed.

• Intermediate energies are linearly interpolated.
• At each energy one ’parameter’ per open

exclusive cross-section is introduced.

• From the parameters other cross-sections can be calculated, for example

σ(n,xn) =
∑

n

∑

p

∑

d

∑

t

∑

h

∑

α

n σex(n, p, d , t, h, α)



Using the Defect model
The sum-rules constitutes a linear model, whose output is fully represented by

εm = Jβ

where β is the vector of exclusive cross-sections on the chosen energy grid.

This simple construction is intended to be used to model the residual of the
TALYS fit, i.e. the data vector is modeled

D = f(x;p) + ε+ εm,

where f is the TALYS output,

ε is the experimental uncertainty and

εm is the defect model



Gaussian Process on the Defect model
The vector β is then placed under a Multi-variate normal prior.

β ∼ N (0,K) {K}i,j = νKl(Ei ,Ej)

• Exclusive cross-sections are considered uncorrelated.
• Within each exclusive channel, prior correlation is parameterized based on

the energy distance by a covariance function Kl(Ei ,Ej).

In other words: Energy dependence of the exclusive cross-sections is modeled using
a Gaussian Process.



A first test.. . on 56Fe

(26−FE−56(N,TOT),,SIG)

(26−FE−56(N,INL)26−FE−56,,SIG)

(26−FE−56(N,EL)26−FE−56,,SIG)
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Summary

• We are developing a pipeline for evaluation of the fast energy range

• based around the TALYS code system
• implements automated procedures for

• treatment of inconsistent experimental data
• treatment of model defects
• new treatment of resonance structure based on

heteroscedastic GP
• designed for fully reproducible ND evaluations
• capability to take advantage of large-scale parallel computing

• Application of the pipeline on 52Cr has been presented

• cross-validation shows that the model, the automated correction
procedures, and the treatment of model defects work well



Thank’s for the attention!



Gaussian Process on the Defect model
The covariance matrix that represents the MVN prior on the model parameters is
block diagonal, with one block per open exclusive channel

K =




K1

. . .

Kk




The model parameters and experimental data are then joint normally distributed.
The full covariance matrix consists of four blocks

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=

[
K KJT

JK JKJT +Σexp

]
.

By conditioning on the observed residual r we can find the conditional mean and
covariance of the parameter vector.

β = Σ12 Σ
−1
22 r, Σ11 = Σ11 −Σ12Σ

−1
22 Σ21


