International Conference on

small modular reactors

and their applications

21-25 October 2024, Vienna, Austria

SESSION 8.3: SMRs Safety Demonstration

J. Sanchez-Torrijos¹, A. Soler¹ Y. Martinez², E.Castro², C. Queral²

¹NFQ Advisory Services S.L. (NFQ) ²Universidad Politécnica de Madrid (UPM)

- 01. Introduction
- 02. Brief description of the NuScale Power Module
 - Fundamentals
 - LOCA sequence in NuScale design
- 03. Modelling of the NuScale Power Module using TRACE
- 04. Simulation results of the selected LOCA case in a NuScale-like SMR
- 05. Conclusions and final remarks

01. Introduction

- 02. Brief description of the NuScale Power Module
 - Fundamentals
 - LOCA sequence in NuScale design
- 03. Modelling of the NuScale Power Module using TRACE
- 04. Simulation results of the selected LOCA case in a NuScale-like SMR
- 05. Conclusions and final remarks

01. Introduction

METATF Project:

Collaboration Research Project launched in 2023 | NFQ-CSN |

Development of methodologies for the thermomechanical analysis under AOO and DEC-A conditions in LWR considering ATF performance

Assessment of the ATF fuel rods performance in LWRs. Benefits/drawbacks drawn from their implementation. (Transients)

TRACE and TRANSURANUS
ATF correlations?

Current fleet of
GEN II reactors
(PWR, BWR)

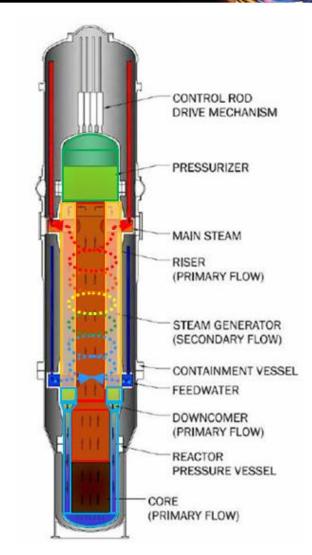
Extra research activity:
LW-SMRs and ATF

NuScale
design
FeCrAl cladding

NFQ Advisory Services S.L.

Spanish Nuclear Safety Council

01. Introduction


02. Description of the NuScale Power Module

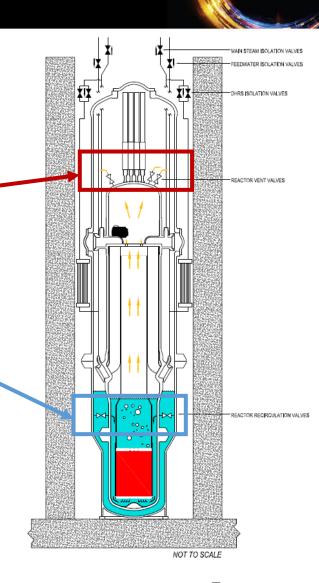
- Fundamentals
- LOCA sequence in NuScale design
- 03. Modelling of the NuScale Power Module using TRACE
- 04. Simulation results of the selected LOCA case in a NuScale-like SMR
- 05. Conclusions and final remarks

02. NuScale Power Module (NPM). Fundamentals

Main design features:

- o Mass-flow rate within the primary side driven by natural circulation.
- o iPWR.
 - o Primary side within the RPV.
 - o PZR located at the RPV top head.
- o Small Core (37 fuel assemblies) with a rated power of 160 MWth.
- Two Intertwined Helically Coiled Steam Generators (HCSGs).
- o RPV allocated within a CNV submerged in the reactor pool.
- Passive safety systems: ECCS | DHRS.

02. NuScale Power Module (NPM).

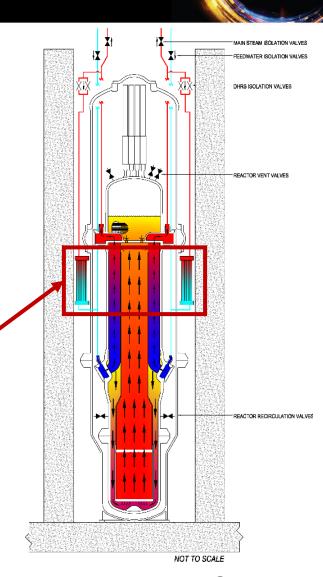

Fundamentals

ECCS performance:

- o Natural circulation loop established between RPV and CNV.
- o Steam condensation in the CNV wall.
- o Three RVVs located at the top head of the RPV.
- o Two RRVs located 1.8 m above TAF approximately.

DHRS performance (not credited in LOCA DCA sequences):

- o Two independent trains (one per each steam line).
- Natural circulation loop through the DHRS HXs.
- o DHRS HXs are fully submerged within the reactor pool.
- o The condensed is directly re-injected to the HCSGs.


02. NuScale Power Module (NPM). Fundamentals

ECCS performance:

- o Natural circulation loop established between RPV and CNV.
- Steam condensation in the CNV wall.
- o Three RVVs located at the top head of the RPV.
- o Two RRVs located 1.8 m above TAF approximately.

DHRS performance (not credited in LOCA DCA sequences):

- o Two independent trains (one per each steam line).
- o Natural circulation loop through the DHRS HXs.
- o DHRS HXs are fully submerged within the reactor pool.
- The condensed is directly re-injected to the HCSGs.

- 01. Introduction
- 02. Brief description of the NuScale Power Module
 - Fundamentals
 - LOCA sequence in NuScale design
- 03. Modelling of the NuScale Power Module using TRACE
- 04. Simulation results of the selected LOCA case in a NuScale-like SMR
- 05. Conclusions and final remarks

02. NuScale Power Module (NPM). Loca sequence

Sequence

Region (Fluid condition)

Rupture Location (System)

ECCS Actuation

LOCA

(Large-Breaks are prevented by design)

Steam space

- High point vent line
- PZR spray supply line

Low RCS pressure

Liquid space

- CVCS makeup line
- CVCS letdown line

High-CNV level

02. NuScale Power Module (NPM). LOCA sequence

Region (Fluid condition)

Rupture Location (System)

ECCS Actuation

Sequence of events (DEGB-LOCA CVCS letdown line)

Steam space

High point vent line

• PZR spray supply line

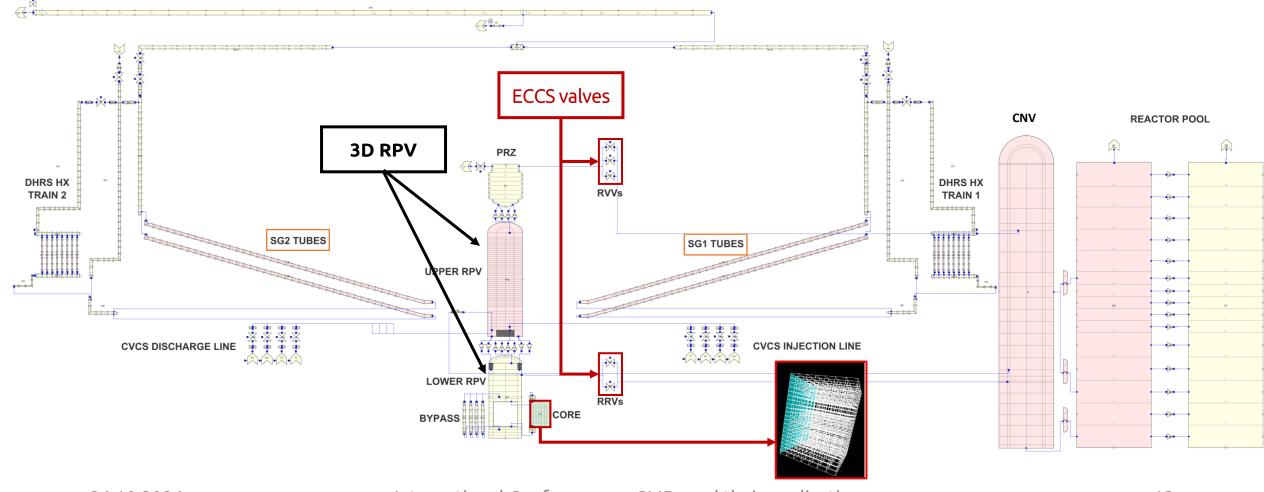
Low RCS pressure

- RCS pressure drop.
- CNV pressurization.
- Reactor SCRAM.
- ECCS actuation.
- CNV/RCS pressure equalization.
- Re-injection of liquid from CNV into the RPV.
- Natural circulation loop between CNV and RCS
- Long-term core cooling using the reactor pool

(Large-Breaks are prevented by design)

LOCA

Liquid space


- CVCS makeup line
- CVCS letdown line

High-CNV level

- 01. Introduction
- 02. Brief description of the NuScale Power Module
 - Fundamentals
 - LOCA sequence in NuScale design
- 03. Modelling of the NuScale Power Module using TRACE
- 04. Simulation results of the selected LOCA case in a NuScale-like SMR
- 05. Conclusions and final remarks

03. Modelling of a NPM using TRACE.

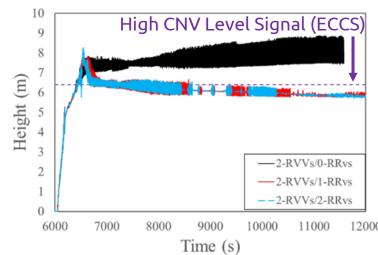
TRACE full-plant model of a NuScale-like SMR:

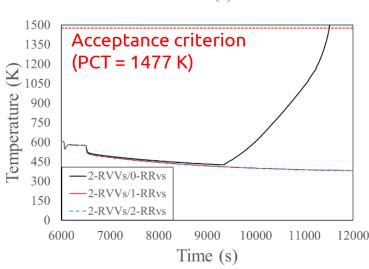
03. Modelling of a NPM using TRACE.

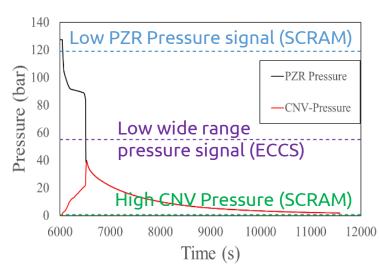
Steady-State calculation:

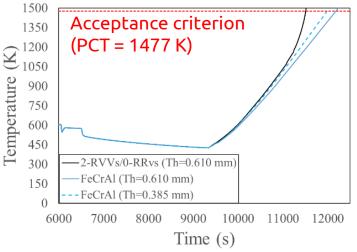
- Initial status of the reactor:
 Hot Full Power at BOC condition;
- RCS mass flow rate is restrained to its minimum value (535.24 kg/s);
- CVCS letdown mass flow rate is assumed to be equal to the CVCS makeup mass flow rate and restrained to its maximum value (3.15 kg/s);
- o CNV pressure under normal operation condition remains at 0.21 bar.

After 6000s of Null-Transient calculation:


Parameter (SI units)	DCA	TRACE (Error %)
RCS pressure (MPa)	12.755	12.732 (-0.18)
RCS mass-flow rate (kg/s)	535.24	536.98 (0.32)
Core mass-flow rate (kg/s)	496.17	501.52 (1.08)
Core inlet temperature	531.48	531.59 (0.02)
Steam temperature (K)	580.04	585.45 (0.93)
SG pressure (MPa)	3.447	3.443 (-0.11)


- 01. Introduction
- 02. Brief description of the NuScale Power Module
 - Fundamentals
 - LOCA sequence in NuScale design
- 03. Modelling of the NuScale Power Module using TRACE
- 04. Simulation results of the selected LOCA case
- 05. Conclusions and final remarks


04. Simulation of the LOCA sequence.


Transient calculation:

- The rupture of the CVCS letdown line (SBLOCA) is simulated.
- o Two cladding materials: **Zr-4** | **FeCrAl**.
- o Two cases for FeCrAl:
 - 1. Same geometry of the reference case.
 - 2. Reduced cladding thickness (0.385 mm).
- o In terms of **coping time**:
 - o UO₂/Zr-4 with 0/2 RRVs: 5450 s
 - UO₂/Zr-4 with 1/2 RRVs: NO CORE DAMAGE
 - UO₂/Zr-4 with 2/2 RRVs: NO CORE DAMAGE
 - FeCrAl 0/2 RRVs (1): UO₂/Zr-4 + 11 min
 - FeCrAl 0/2 RRVs (2): UO₂/Zr-4 + 8 min

- 01. Introduction
- 02. Brief description of the NuScale Power Module
 - Fundamentals
 - LOCA sequence in NuScale design
- 03. Modelling of the NuScale Power Module using TRACE
- 04. Simulation results of the selected LOCA case in a NuScale-like SMR
- 05. Conclusions and final remarks

05. Conclusions and final remarks

- A TRACE model of a NuScale-like SMR is built to simulate a LOCA due to the rupture of the CVCS discharge line.
- In accordance with the results, the core damage condition is reached after 5500 s of transient, if none of the RRVs are able to open, for the case with fuel rods made with UO2/Zry.
- A slight improvement in the coping time (several minutes) is accomplished when the FeCrAl material is considered for the cladding.
- Two additional cases have been simulated considering the opening of 1/2 and 2/2 RRVs respectively, and the results show that the NuScale-like SMR would be able to deal with the postulated scenario conditions with only 1 RRV available.

Acknowledgements

The authors of this work would like to kindly express their gratitude for the technical support received within the IAEA CRP ATF-TS project.

The authors would like to express their gratitude to the Spanish Nuclear Safety Council (CSN) for the technical support and fundings received to perform this work within the NFQ-CSN collaboration agreement (METATF).

The end

We make the exceptional our everyday

Contact us:

Amparo Soler (<u>amparo.soler@nfq.es</u>) – Head of the Nuclear Department

Jorge Sanchez Torrijos (<u>jorge.sanchez@nfq.es</u>) – Senior Consultant of the Nuclear Department